Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Signal of single scattering albedo in water leaving polarization

J. Piskozub, W. Freda

Abstract


The purpose of this article is to examine whether the change in single scattering albedo in the surface layer of the sea will cause significantchanges in the polarization of light emerging from the sea. The results of a polarization resolving Monte Carlo radiative transfer calculationsare presented. Bubble clouds of different bubble concentrations are used to achieve a wide range of single scattering albedo variability. Thevariability of the polarization signal is largest in the direction looking towards the sun which is unfortunate due to sun reflection. Howeverthe variability is also significant at direction perpendicular to solar azimuth angle which should it make possible to use this signal in remotesensing. The polarization degree of water leaving radiation, together with reflectance can be used to determine the backscattering ratio ofthe observed sea water.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13055]

Full Text: PDF

Citation Details


Cite this article

References


G. W. Kattawar and C. N. Adams, ”Stokes Vector Calculations of the Submarine Light Field in an Atmosphere- Ocean with Scattering According to a Rayleigh Phase Matrix: Effect of Interface Refractive Index on Radiance and Polarization,” Limnol. Oceanogr. 34, 1453– 1472 (1989).

C. N. Adams and G. W. Kattawar, ”Effect of volume-scattering function on the errors induced when polarization is neglected in radiance calculations in an atmosphere-ocean system,” Appl. Opt. 32, 4610–4617 (1993).

J. T. Adams, E. Aas, N. K. Hjøerslev, and B. Lundgren, ”Comparison of radiance and polarization values observed in the Mediterranean Sea and simulated in a Monte Carlo model,” Appl. Opt. 41, 2724–2733 (2002).

M. Chami, R. Santer, and E. Dilligeard, ”Radiative Transfer Model for the Computation of Radiance and Polarization in an Ocean- Atmosphere System: Polarization Properties of Suspended Matter for Remote Sensing,” Appl. Opt. 40, 2398–2416 (2001).

M. Chami, ”Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. 112, C05026 (2007).

P. Flatau, J. Piskozub, and J. R. Zaneveld, ”Asymptotic light field in the presence of a bubble-layer,” Opt. Express 5, 120–124 (1999).

J. Piskozub and D. McKee, ”Effective scattering phase functions for the multiple scattering regime,” Opt. Express 19, 4786–4794 (2011).

J. Piskozub, ”Effects of surface waves and sea-bottom on selfshading on in-water optical instruments,” Proc. SPIE 2258, 300–308 (1994).

J. Piskozub, A. R. Weeks, J. N. Schwarz, and I. S. Robinson, ”Self- Shading of Upwelling Irradiance for an Instrument with Sensors on a Sidearm,” Appl. Opt. 39, 1872–1878 (2000),

D. McKee, J. Piskozub, and I. Brown, ”Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16, 19480–19492 (2008).

D. Miyazaki, N. Takashima, A. Yoshida, E. Harashima, and K. Ikeuchi, ”Polarization-based Shape Estimation of Transparent Objects by Using Raytracing and PLZT Camera,” Proc. SPIE 5888, 1-14 (2005).

A. D. Code, and B. A. Whitney, ”Polarization from scattering in blobs,” Astrophys. J. 441, 400–407 (1995).

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, ”Influence of Forward and Multiple Light Scatter on the Measurement of Beam Attenuation in Highly Scattering Marine Environments,” Appl. Opt. 43, 4723–4731 (2004).

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, ”Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results,” Opt. Express 17, 11747–11752 (2009).

K. J. Voss and E. S. Fry, ”Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).

W. Freda, ”Angular variability in the depolarization of scattered light,” Zesz. Nauk. Akademii Morskiej w Gdyni 60, 119–127 (2009), (in Polish).

A. A. Kokhanovsky, ”Parameterization of the Mueller matrix of oceanic waters,” J. Geophys. Res. 108, 3175 (2003).

T. J. Petzold, ”Volume scattering functions for selected ocean waters,” in Tech. Rep. SIO, 72-78 (Scripps Institution of Oceanography, San Diego, 1972).

A. Ibrahim, A. Gilerson, T. Harmel, A. Tonizzo, J. Chowdhary, and S. Ahmed, ”The relationship between upwelling underwater polarization and attenuation/absorption ratio,” Opt. Express 20, 25662– 25680 (2012).

J. Piskozub, T. Neumann, and L. Wozniak, ”Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683–14688 (2008).

G. Fournier and J. L. Forand, ”Analytic phase function for ocean water„” Proc. SPIE 2258, 194–201 (1994).

C. D. Mobley, L. K. Sundman, and E. Boss, ”Phase Function Effects on Oceanic Light Fields,” Appl. Opt. 41, 1035–1050 (2002).

L. C. Henyey and J. L. Greenstein, ”Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

W. Freda, T. Król, O. V. Martynov, E. B. Shybanov, and R. Hapter, ”Measurements of Scattering Function of sea water in Southern Baltic,” Eur. Phys. J.-Spec. Top. 144, 147–154 (2007).

W. Freda and J. Piskozub, ”Improved method of Fournier-Forand marine phase function parameterization,” Opt. Express 15, 12763– 12768 (2007).

W. Freda, and J. Piskozub, ”Revisiting the role of oceanic phase function in remote sensing reflectance,” Oceanologia 54, 29–38 (2012).