Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide

M. Khatibi Moghaddam, A. R. Attari, M. M. Mirsalehi

Abstract


In this paper, we design a waveguide on photonic crystal slab for propagation of low-dispersion slow light. By shifting the air holes adjacent to the waveguide, we obtain a photonic crystal waveguide with a group index of 25 in 25 nm bandwidth which results in a group index bandwidth product of 0.366. To take the advantages of low dispersion slow light generated in this engineered waveguide, we next focus on low coupling efficiency limitation. A low group index coupler is proposed to increase the transmission of the light to the slow mode in the low dispersion bandwidth. By using the proposed coupler and adjusting the structural parameters, the coupling efficiency to low dispersion slow light is improved 11 dB compared to the transmission without the coupler.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13066]

Full Text: PDF

Citation Details


Cite this article

References


T. F. Krauss, ”Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008).

T. Baba, ”Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).

T. F. Krauss, ”Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40, 2666–2670 (2007).

T. Baba, and D. Mori, ”Slow light engineering in photonic crystals,” J. Phys. D Appl. Phys. 40, 2659–2665 (2007).

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, ”Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).

A. Yu. Petrov, and M. Eich, ”Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, ”Flat band slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).

S. Kubo, D. Mori, and T. Baba, ”Low-group-velocity and lowdispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).

L. H. Frandsen, A. V. Lavrinenko, J. F. Pedersen, and P. I. Borel, ”Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, ”Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18, 5942–5950 (2010).

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, ”Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).

Y. Hamachi, S. Kubo, and T. Baba, ”Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, ”Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, ”Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, ”Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics Journal 2, 404–414 (2010).

A. Hosseini, X. Xu, H. Subbaraman, C. Lin, and R. T. Chen, ”Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20, 12318–12325 (2012).

E. Miyai, and S. Noda, ”Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide,” J. Opt. Soc. Am. B 21, 67–72 (2004).

A. Mekis, and J. D. Joannopoulos, ”Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).

Y. A. Vlasov, and S. J. McNab, ”Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, ”Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 1–15 (2002).

P. Pottier, M. Gnan, and R. M. De La Rue, ”Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, ”Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97, 183302 (2010).

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, ”On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).

C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, ”Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009).

J. D. Joannopoulos, and S. G. Johnson, Photonic Crystals: The Road from Theory to Practice (Kluwer, Dordrecht, 2002).

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle and T. F. Krauss, ”Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).

D. M. Beggs, L. O’Foalain and T. F. Krauss, ”Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonic. Nanostruct. 6, 213–218 (2008).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (third edition, Artech House Publishers, Norwood, 2005).

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, ”Comprehensive FDTD modeling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004).