Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Design of subwavelength optical fibre for low-loss Terahertz transmission

N. F. Ren, M.-Y. Chen, B. Sun, L. Ge

Abstract


A low-loss Terahertz (THz) transmission optical fibre with a subwavelength core is reported in this article. The main fibre is composed of a subwavelength solid polymer core and a tube. The tube is used to prevent the extending of THz wave to the external environment. Two solid ends are introduced to suspend the subwavelength core in the air. The solid fibre ends are found have low splicing losses with the main fibre. The proposed fibre provides a simple technique for the transmission of THz wave in a short distance.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13068]

Full Text: PDF

Citation Details


Cite this article

References


P. H. Siegel, ”Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).

M. Tonouchi, ”Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007).

P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X. C. Zhang, ”A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).

B. Clough, J. Liu, and X. C. Zhang, ”All air-plasma terahertz spectroscopy,” Opt. Lett. 36, 2399–2401 (2011).

M. Seo, A. Adam, J. Kang, J. Lee, K. Ahn, Q. Park, P. Planken, and D. Kim, ”Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008).

V. P. Wallace, E. MacPherson, J. A. Zeitler, and C. Reid, ”Threedimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25, 3120–3133 (2008).

R. Degl’Innocenti, M. Montinaro, J. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. Beere, and D. Ritchie, ”Differential near-field scanning optical microscopy with THz quantum cascade laser sources,” Opt. Express 17, 23785–23792 (2009).

A. Hassani, A. Dupuis, and M. Skorobogatiy, ”Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340–6351 (2008).

D. Chen, and H. Chen, ”A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010).

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, ”Porouscore honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, ”Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, ”Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, ”Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, ”Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127– 9138 (2011).

D. Chen, ”Mode property of Terahertz polymer tube,” J. Lightw. Technol. 28, 2708–2713 (2010).

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, ”Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359–371 (2001).

W. Huang, and C. Xu, ”Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Elect. 29, 2639–2649 (1993).

G. R. Hadley, ”Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426–1428 (1992).