Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Compact planar lenses based on a pinhole and an array of single mode metallic slits

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, R. Haïdar

Abstract


Plasmonic lenses are based on complex combinations of nanoscale high aspect ratio slits. We show that their design can be greatly simplified, keeping similar performance while releasing technological constraints. The simplified system, called Huygens lens, consists in a central aperture surrounded by several identical single mode slits in a thin gold layer that does not rely anymore on surface plasmons. The focusing behaviour with respect to the position and number of slits is investigated, and we demonstrate the interest of this design to get compact array of lenses.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13071]

Full Text: PDF

Citation Details


Cite this article

References


E. Ozbay, ”Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).

L. Verslegers, P. Catrysse, Z. Yu, J. White, E. Barnard, M. Brongersma, and S. Fan, ”Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2008).

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, ”Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005).

L. Verslegers, P. Catrysse, Z. Yu, and S. Fan, ”Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112–071112 (2009).

L. Verslegers, P. Catrysse, Z. Yu, and S. Fan, ”Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 33902 (2009).

Y. Fu, and X. Zhou, ”Plasmonic lenses: a review,” Plasmonics 5, 287–310 (2010).

S. Ishii, V. M. Shalaev, and A. V. Kildishev, ”Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2012).

S. Collin, F. Pardo, and J. Pelouard, ”Waveguiding in nanoscale metallic apertures,” Opt. Express 15, 4310–4320 (2007).

Q. Chen, and D. Cumming, ”Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18, 14788–14793 (2010).

Q. Chen, ”Effect of the number of zones in a one-dimensional plasmonic zone plate lens: simulation and experiment,” Plasmonics 6, 75–82 (2011).

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, ”Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119–091119 (2007).

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, ”Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108–031108 (2013).

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, ”Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91, 081101–081101 (2007).

J. Wang, X. Wu, and J. Zhang, ”Imaging properties of Fresnel zone plate-like surface plasmon polariton launching lenses,” Opt. Express 18, 6686–6692 (2010).

F. Hao, R. Wang, and J. Wang, ”Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).

R. Mote, S. Yu, B. Ng, W. Zhou, and S. Lau, ”Near-field focusing properties of zone plates in visible regime-New insights,” Opt. Express 16, 9554–9564 (2008).

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk´yanchuk, and S. P. Yeo, ”Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,” Laser Phys. Lett. 10, 065004 (2013).

Y. Yu, and H. Zappe, ”Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19, 9434–9444 (2011).

M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications, Mineola,1964).

Comsol Multiphysics 4.2 http://www.comsol.com.

P. Johnson, and R. Christy, ”Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).