Journal of the European Optical Society - Rapid publications, Vol 8 (2013)
Compact planar lenses based on a pinhole and an array of single mode metallic slits
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13071]
Citation Details
Cite this article
References
E. Ozbay, â€Plasmonics: merging photonics and electronics at nanoscale dimensions,†Science 311, 189–193 (2006).
L. Verslegers, P. Catrysse, Z. Yu, J. White, E. Barnard, M. Brongersma, and S. Fan, â€Planar lenses based on nanoscale slit arrays in a metallic film,†Nano Lett. 9, 235–238 (2008).
H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, â€Beam manipulating by metallic nano-slits with variant widths,†Opt. Express 13, 6815–6820 (2005).
L. Verslegers, P. Catrysse, Z. Yu, and S. Fan, â€Planar metallic nanoscale slit lenses for angle compensation,†Appl. Phys. Lett. 95, 071112–071112 (2009).
L. Verslegers, P. Catrysse, Z. Yu, and S. Fan, â€Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,†Phys. Rev. Lett. 103, 33902 (2009).
Y. Fu, and X. Zhou, â€Plasmonic lenses: a review,†Plasmonics 5, 287–310 (2010).
S. Ishii, V. M. Shalaev, and A. V. Kildishev, â€Holey-metal lenses: sieving single modes with proper phases,†Nano Lett. 13, 159–163 (2012).
S. Collin, F. Pardo, and J. Pelouard, â€Waveguiding in nanoscale metallic apertures,†Opt. Express 15, 4310–4320 (2007).
Q. Chen, and D. Cumming, â€Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,†Opt. Express 18, 14788–14793 (2010).
Q. Chen, â€Effect of the number of zones in a one-dimensional plasmonic zone plate lens: simulation and experiment,†Plasmonics 6, 75–82 (2011).
F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, â€Focusing of light by a nanohole array,†Appl. Phys. Lett. 90, 091119–091119 (2007).
E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, â€Super-oscillatory optical needle,†Appl. Phys. Lett. 102, 031108–031108 (2013).
L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, â€Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,†Appl. Phys. Lett. 91, 081101–081101 (2007).
J. Wang, X. Wu, and J. Zhang, â€Imaging properties of Fresnel zone plate-like surface plasmon polariton launching lenses,†Opt. Express 18, 6686–6692 (2010).
F. Hao, R. Wang, and J. Wang, â€Design and characterization of a micron-focusing plasmonic device,†Opt. Express 18, 15741–15746 (2010).
R. Mote, S. Yu, B. Ng, W. Zhou, and S. Lau, â€Near-field focusing properties of zone plates in visible regime-New insights,†Opt. Express 16, 9554–9564 (2008).
H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk´yanchuk, and S. P. Yeo, â€Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method,†Laser Phys. Lett. 10, 065004 (2013).
Y. Yu, and H. Zappe, â€Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,†Opt. Express 19, 9434–9444 (2011).
M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications, Mineola,1964).
Comsol Multiphysics 4.2 http://www.comsol.com.
P. Johnson, and R. Christy, â€Optical constants of the noble metals,†Phys. Rev. B 6, 4370 (1972).