Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Dynamics of a chain of optically coupled micro droplets

T. Crouzil, M. Perrin

Abstract


We study a chain of fluid droplets excited by two incoherent laser beams. Such structured object is merely an array of spherical lenses, that can guide a TEMpq optical mode. Taking into account the optical forces exerted by two counterpropagating beams, we show that the droplets can be trapped and the chain auto-organizes in the optical potential. The model takes into account the possible coalescence of several droplets, and shows that the droplet size can increase before they become trapped at stable postitions. For some input beam parameters (beam waist size and position), we have observed dynamic trapping : the droplets experience collective oscillation. Meanwhile, the beam shape evolves periodically in time.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13079]

Full Text: PDF

Citation Details


Cite this article

References


A. Ashkin, J. M. Dziedzic, J. E Bjorkholm, and S. Chu, ”Observation of a single beam gradient force optical trap for dielectric particle,” Opt. Lett. 11, 288–290 (1986).

D. J. Odde, and M. J. Renn, ”Laser-guided direct writing for applications in biotechnology,” TIBTECH 17, 385–389 (1999).

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch- Marte, ”Full phase and amplitude control of holographic optical tweezers with highefficiency,” Opt. Express 16(7), 4479–4486 (2008).

S. J. Hart, and A. V. Terray, ”Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83, 5316 (2003).

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, ”Theory of optical chromatography,” Anal. Chem. 69, 2701–2710 (1997).

J. E. Curtis, B. A. Koss, and D. G. Grier, ”Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, ”Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, ”Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27(4), 267–269 (2002).

A. Rahmani, and P. Chaumet, ”Optical trapping near a photonic crystal,” Opt. Express 14, 6353–6358 (2006).

S. A. Tartakova, A. E. Carruthers, and K. Dholakia, ”Onedimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett., 89, 283901 (2002).

N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, ”Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).

H. C. van de Hulst, Light Scattering by small particles (Courier Dover Publications, Mineola, 1957).

V. Demergis, and E. L. Florin, ”Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12, 5756–5760 (2012).

J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, ”Emergent properties in optically bound matter,” Opt. Express 16(10), 6921–6929 (2008).

M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, ”Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express 16(13), 9306–9317 (2008).

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, ”Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72, 085130 (2005).

A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).

R. G. Wenzel, ”Oscillation of gaussian beam parameters in periodic lens waveguides,” Opt. Commun. 43, 89–92 (1982).

J. Degallaix, ”Oscar a matlab based optical fft code,” J. Phys.: Conf. Ser. 228, 012021 (2010).

R. Gussgard, T. Lindmo, and I. Brevik, ”Calculation of the trapping force in a strongly focused laser beam,” JOSA B 9, 1922–1930 (1992).

A. Isomura, N. Magome, M. I. Kohira, and K. Yoshikawa, ”Toward the stable optical trapping of a droplet with counter laser beams under microgravity,” Chem. Phys. Lett. 429, 0605165 (2006).

S. Å. Ellingsen, ”Theory of microdroplet and microbubble deformation by gaussian laser beam,” J. Opt. Soc. Am. B 30(6), 1694–1710 (2013).

S. H. Strogatz, Nonlinear dynamics and Chaos (Perseus Books, Cambridge, 1994).

J. Javaloyes, M. Perrin, and A Politi, ”Collective atomic recoil laser as a synchronization transition,” Phys. Rev. E 78, 011108 (2008).

A. S. Basu, and Y. B. Gianchandani, ”A programmable array for contact-free manipulation of floating droplets on featureless substrates by the modulation of surface tension,” J. Microelectromech. S. 18(6), 1163 (2009).