Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Energy efficiency of a new trifocal intraocular lens

F. Vega, F. Alba-Bueno, M. S. Millán

Abstract


The light distribution among the far, intermediate and near foci of a new trifocal intraocular lens (IOL) is experimentally determined, as a function of the pupil size, from image analysis. The concept of focus energy efficiency is introduced because, in addition to the theoretical diffraction efficiency of the focus, it accounts for other factors that are naturally presented in the human eye such as the level of spherical aberration (SA) upon the IOL, light scattering at the diffractive steps or the depth of focus. The trifocal IOL is tested in-vitro in two eye models: the aberration-free ISO model, and a so called modified-ISO one that uses an artificial cornea with positive spherical SA in instead. The SA upon the IOL is measured with a Hartmann-Shack sensor and compared to the values of theoretical eye models. The results show, for large pupils, a notorious reduction of the energy efficiency of the far and near foci of the trifocal IOL due to two facts: the level of SA upon the IOL is larger than the value the lens is able to compensate for and there is significant light scattering at the diffractive steps. On the other hand, the energy efficiency of the intermediate focus for small pupils is enhanced by the contribution of the extended depth of focus of the near and far foci. Thus, while IOLs manufacturers tend to provide just the theoretical diffraction efficiency of the foci to show which would be the performance of the lens in terms of light distribution among the foci, our results put into evidence that this is better described by using the energy efficiency of the foci.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14002]

Full Text: PDF

Citation Details


Cite this article

References


N. de Vries, and R. Nuijts, ”Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refr. Surg. 39, 268–278 (2013).

J. M. Artigas, J. L. Menezo, C. Peris, A. Felipe, and M. Díaz-Llopis, ”Image quality with multifocal intraocular lenses and the effect of pupil size: Comparison of refractive and hybrid refractivediffractive designs,” J Cataract Refr. Surg. 33, 2111–2117 (2007).

W. A. Maxwell, S. S. Lane, and F. Zhou, ”Performance of presbyopia correcting intraocular lenses in distance optical bench tests,” J. Cataract Refr. Surg. 35, 166–171 (2009).

J. L. Alió, B. Elkady, D. Ortiz, and G. Bernabeu, ”Clinical outcomes and intraocular optical quality of a diffractive multifocal intraocular lens with asymmetrical light distribution,” J. Cataract Refr. Surg. 34, 942–948 (2008).

J. F. Blaylock, Z. Si, and C. Vickers, ”Visual and refractive status at different focal distances after implantation of the ReSTOR multifocal intraocular lens,” J. Cataract Refr. Surg. 32, 1464–1473 (2006).

J. C. Alfonso, L. Fernández-Vega, BM. Begoña, and R. Montés-Micó, ”Prospective visual evaluation of apodized diffractive intraocular lenses,” J Cataract. Refr. Surg. 33, 1235–1243 (2007).

K. Petermeier, and P. Szurman, ”Subjective and objective outcome following implantation of the apodized diffractive AcrySof ReSTOR,” Ophthalmology 104, 406–408 (2007).

G. J. Swanson, ”Diffractive trifocal intraocular lens design,” U.S. Patent 5,344,447 (1994).

A. Vorkresenkaya, N. Pozdeyeva, N. Pashtaev, Y. Batkov, V. Treushnicov, and V. Cherednik, ”Initial results of trifocal diffractive IOL implantation,” Graef. Arch. Clin. Exp. 248, 1299–1306 (2010).

A. L. Cohen, ”Diffraction IOL with micromodulation,” U.S. Patent 0224138 (2012).

D. Gatine, C. Pagnoulle, Y. Houbrechts, and L. Gobin, ”Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refr. Surg. 37, 2060–2067 (2011).

B. Cochener, J. Vryghem, P. Rozot, G. Lesieur, S. Heireman, J. A. Blanckaert, E. Van Acker, and S. Ghekiere, ”Visual and refractive outcomes after implantation of a fully diffractive trifocal lens,” Clin. Exp. Ophthalmol. 6, 1421–1427 (2012).

A. L. Sheppard, S. Shah, U. Bhatt, G. Bhogal, and J. S. Wolffsohn, ”Visual outcomes and subjective experience after bilateral implantation of a new diffractive trifocal intraocular lens,” J. Cataract Refr. Surg.39, 343-349 (2013).

J. F. Montin,” Achieving spectacle independence with the ATLISA tri 839MP,” Cataract & Refractive Surgery Today Europe, March supplement, Vol. 3, 16–19 (2012).

V. Portney, ”Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refr. Surg. 37, 2053–2059 (2011).

D. Gatinel, and Y. Houbrechts, ”Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refr. Surg. 39, 1093–1099 (2013)

J. Ruiz-Alcozer, D. Madrid-Costa, S. García-Lázaro, T. Ferrer-Blasco, and R. Montés-Micó, ”Optical performance of two new trifocal intraocular lenses: trough-focus MTF and influence of pupil size,” Clin. Exp. Ophthalmol. doi:10.111/ceo.12181.

F. Vega, F. Alba-Bueno, and MS. Millán, ”Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophth. Vis. Sci. 52, 5695–5710 (2011).

International Organization for Standardization (ISO), Ophthalmic Implants, Intraocular lenses Part 2: Optical Properties and Test Methods (ISO 11979-2, 1999).

F. Vega, MS. Millán, and B. Wells, ”Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35, 1539–1541 (2010).

A. Guirao, M. Redondo, and P. Artal, ”Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A. 17, 1697–1702 (2000).

L. Wang, E. Dai, DD. Koch, and A. Nathoo, ”Optical aberrations of the human anterior cornea,” J. Cataract Refr. Surg. 29, 1514–1521 (2003).

F. Castignoles, M. Flury, and T. Lepine, ”Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs,” Opt. Express 18, 5245–5256 (2010).

J. Tabernero, P. Piers, and P. Artal, ”Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).

T. Kohnen, OK. Klaproth, and J. Bühren, ”Effect of intraocular lens asphericity on quality of vision after cataract removal: An intraindividual comparison,” Ophthalmology 116, 1697–1706 (2009).

S. Pieh, W. Fiala, A. Malz, and W. Stork, ”In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophth. Vis. Sci. 50, 1264–1270 (2009).

S. Marcos , P. Rosales, L. Llorente, and I. Jimenez-Alfaro, ”Change in corneal aberrations after cataract surgery with two types of aspheric intraocular lenses,” J. Cataract. Refr. Surg. 33, 217–226 (2007).

N. E. de Vries, L. Franssen, C. A. B. Webers, N. G. Tahzib, Y. Y. Y. Cheng, F. Hendrikse, K. F. Tjia, et al., ”Intraocular straylight after implantation of the multifocal AcrySof ReSTOR SA60D3 diffractive intraocular lens,” J. Cataract. Refr. Surg. 34, 957–962 (2008).

M. M. Meyers, and R. E. Albrecht, ”Technique to eliminate scattered light in diffractive optical elements,” U.S Patent 5,801,889. (1998).

F. Alba-Bueno, F. Vega, and M. S. Millán, ”Design of a test bench for intraocular lens optical characterization,” J. Phys. Conf. Ser. 274, 012105–012112 (2011).

S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, ”Model eyes for evaluation of intraocular lenses,” Appl. Optics 46, 6595–6605 (2007).

S. Norrby, ”Iso eye model not longer valid for assessing aspherical lenses,” J. Cataract Refr. Surg. 34, 1056–1057 (2008).

Z. Zalevsky ”Extended depth of focus imaging: a review,” SPIE Reviews 1, 018001-1-018001-11 (2010).