Journal of the European Optical Society - Rapid publications, Vol 9 (2014)
Broadband Mid-IR superabsorption with aperiodic polaritonic photonic crystals
Abstract
We propose an approach for broadband near-perfect absorption with aperiodic-polaritonic photonic crystals (PCs) operating in the phononpolariton gap of the constituent material. In this frequency regime the bulk polaritonic materials are highly reflective due to the extreme permittivity values, and so their absorption capabilities are limited. However, we are able to achieve absorptance of more than 90%  almost across the entire phonon-polariton gap of SiC with a SiC-air aperiodic one-dimensional(1D)-PC with angular bandwidth that covers the range of realistic diffraction-limited sources. We explore two types of aperiodic PC schemes, one in which the thickness of the SiC layer increases linearly, and one in which the filling ratio increases linearly throughout the structure. We find that the former scheme performs better in terms of exhibiting smoother spectra and employing less SiC material. On the other hand, the second scheme performs better in terms of the required total structure size. We analyze the principles underpinning the broadband absorption merit of our proposed designs, and determine that the key protagonists are the properties of the entry building block and the adiabaticity of the aperiodic sequencing scheme. Further investigation with derivative lamellar sequences,–resulting by interchanging or random positioning of the original building blocks–, underline the crucial importance of the building block arrangement in an increasing order of thickness. If we relax the requirement of near-perfect absorption, we show that an averaged absorption enhancement across the SiC phonon-polariton gap of ~10 can be achieved with much shorter designs of the order of two free-space wavelengths. Our findings suggest that our aperiodic polaritonic PC route can be promising to design broadband electromagnetic absorbers across the spectrum.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14012]
Citation Details
Cite this article
References
H. A. Atwater, and A. Polman, â€Plasmonics for improved photovoltaic devices,†Nat. Mater. 9, 205–213 (2010).
R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, â€Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,†Adv. Mater. 21, 3504–3509 (2009).
E. Rephaeli, and S. Fan. â€Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,†Opt. Express 17 15145–15159 (2009).
X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, â€Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,†Nanotechnology 20, 215704 (2009).
Y. Guo, and Z. Jacob, â€Thermal hyperbolic metamaterials,†Opt. Express 21, 15014–15019 (2013).
X. L. Liu, L. P. Wang, and Z. M. Zhang, â€Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays,†J. Heat Transf. 135, 061602 (2013).
J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, â€Allmetallic three-dimensional photonic crystals with a large infrared bandgap,†Nature 417, 52–55 (2002).
T. Maier, and H. Brueckl, â€Multispectral microbolometers for the midinfrared,†Opt. Lett. 35 3766–3768 (2010).
E. L. Dereniak, and D. G. Crowe, Optical Radiation Detectors (John Wiley and Sons, Hoboken, 2008).
Handbook of Optics Volume I: Fundamentals, Techniques, and Design, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (Second Edition, McGraw-Hill, New York, 1995).
A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, â€Review of current progress in quantum dot infrared photodetectors,†Laser and Photonics Reviews 4, 738–750 (2010).
S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, et al., â€A monolithically integrated plasmonic infrared quantum dot camera,†Nat. Commun. 2, 286 (2011).
C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, â€Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures,†Infrared. Phys. Techn. 52, 348–352 (2009).
J. A. Mason, S. Smith, and D. Wasserman, â€Strong absorption and selective thermal emission from a midinfrared metamaterial,†Appl. Phys. Lett. 98, 241105-3 (2011).
J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, â€Strong coupling of molecular and mid-infrared perfect absorber resonances,†IEEE Photonic. Tech. L. 24, 31–33 (2012).
N. I. Landy, S. Sajuyigbe , J. J. Mock, D. R. Smith, and W. J. Padilla, â€Perfect Metamaterial Absorber,†Phys. Rev. Lett. 100, 207402 (2008).
C. Wu, and G. Shvets, â€Design of metamaterial surfaces with broadband absorbance,†Opt. Lett. 37, 308–310 (2012).
X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, â€Infrared spatial and frequency selective metamaterial with near-unity absorbance,†Phys. Rev. Lett. 104, 207403 (2010).
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, â€Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,†Phys. Rev. B 79, 045131 (2008).
G. Veronis, R. W. Dutton, and S. Fan, â€Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,†J. Appl. Phys. 97, 093104 (2005).
C. Lin, and M. L. Povinelli, â€Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,†Opt. Express 17, 19371 (2009).
Y. Park, E. Drouard, O. El-Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, â€Absorption enhancement using photonic crystals for silicon thin film solar cells,†Opt. Express 17, 14312 (2009).
S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, â€Origin of absorption enhancement in a tungsten, threedimensional photonic crystal,†J. Opt. Soc. Am. B. 20, 1538–1541 (2003).
G. C. R. Devarapu, and S. Foteinopoulou, â€Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,†Opt. Express 20, 13040–13054 (2012).
G. C. R. Devarapu, and S. Foteinopoulou, â€Compact photoniccrystal superabsorbers from strongly absorbing media,†J. Appl. Phys. 114, 033504 (2013).
C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, Hoboken, 2005).
C. Engstrom, C. Hafner, and K. Schmidt, â€Computations of lossy bloch waves in two-dimensional photonic crystals,†J. Comput. Theor. Nanos. 6, 1–9 (2009).
A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, â€Chirped gratings in integrated optics,†IEEE J. Quantum. Elect. 13, 296–304 (1977).
A. Mouldi, and M. Kanzari, â€Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses,†Optik 123, 125–131 (2012).
A. Mouldi, and M. Kanzari, â€Broad multilayer antireflection coating by apodized and chirped photonic crystal,†Opt. Commun. 284, 4124–4128 (2011).
P. B. Catrysse, and S. Fan, â€Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,†Phys. Rev. B 75, 075422-5 (2007).
R. W. Waynant, I. K. Ilev, and I. Gannot, â€Mid-infrared laser applications in medicine and biology,†Philos. T. R. Soc. Lond. A 359, 635–644 (2001).
B. Mizaikoff, â€Waveguide-enhanced mid-infrared chem/bio sensors ,†Chem. Soc. Rev. 42, 8683–8699 (2013).
J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, â€Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase,†Phys. Rev. Lett. 91, 203003 (2003).
R. Assendorp, P. R. Wesselius, D. C. B. Whittet, and T. Prusti, â€A study of the Chamaeleon I Dark Cloud and T-association - II: High resolution IRAS maps around HD97048 and HD97300,†Mon. Not. R. Astron. Soc. 247, 624–631 (1990).
H. L. Johnson, and W. W. Morgan, â€Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas,†Astrophys. J. 117, 313–352 (1953).
H. U. Kaufl, â€Ground-based astronomy in the 10 and 20 µm atmospheric windows at ESO - scientific potential at present and in the future,†The Messenger 73, 8–12 (1993).
P. Yeh, Optical waves in layered media (Wiley-Interscience, Hoboken, 2005).
P. Yeh, A. Yariv, and C. S. Hong, â€Electromagnetic propagation in periodic stratified media. I. General theory,†J. Opt. Soc. Am. 67, 423–438 (1977).
A. Yariv, and P. Yeh, â€Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,†J. Opt. Soc. Am. 67, 438–447 (1977).
S. Foteinopoulou, and C. M. Soukoulis, â€Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,†Phys. Rev. B 72, 165112 (2005).
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light (Princeton University Press, Princeton, 2008).
P. Markos, and C. M. Soukoulis, From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008).
S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, â€Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,†Phys. Rev. B 84, 035128 (2011).
S. Foteinopoulou, â€Photonic crystals as metamaterials,†Physica B 407, 4056 (2012).
J. D. Jackson, Classical Electrodynamics (Third Edition, John Wiley and Sons, Hoboken,1998).
D. E. Knuth, The art of computer programming vol. 2 (Third edition, Addison-Wesley, Boston, 1998).