Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

High-speed imaging of short wind waves by shape from refraction

D. Kiefhaber, S. Reith, R. Rocholz, B. Jähne

Abstract


This paper introduces the first high-speed system for slope imaging of wind-induced short water waves. The imaging slope gauge method is used, which is based on the shape from refraction principle. The downward looking camera with a telecentric lens observes the refraction of light rays coming from a high power custom telecentric LED light source that is placed underneath the wind wave facility. The light source can be programmed to arbitrary intensity gradients in the x- and y-direction, so that the origin of a light ray is coded in intensity. Four gradient images (acquired at 6000 fps) are combined for one 2D slope image. By only using intensity ratios, the measurements become independent of lens effects from the curved water surface and inhomogeneities in the light source. Independence of wave height is guaranteed by using telecentric illumination and telecentric imaging. The system is capable to measure the slopes of a wind-driven water surface in the Heidelberg Aeolotron wind-wave facility on a footprint of 200 x 160 mm with a spatial resolution of 0.22 mm and a temporal resolution of more than 1500 fps. For the first time, it is now possible to investigate the structure of short wind-induced waves with sufficient spatial and temporal resolution to study their dynamic characteristics without aliasing effects. Example images and a video of a 3D reconstructed water surface are shown to illustrate the principle.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14015]

Full Text: PDF

Citation Details


Cite this article

References


G. R. Valenzuela, ”Theories for the interaction of electromagnetic and ocean waves - A review,” Bound.-Lay. Meteorol. 13, 61–85 (1978).

Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, ”Analytical solution of radiative transfer in the coupled atmosphereocean system with a rough surface,” Appl. Optics 45, 7443–7455 (2006).

M. Hieronymi, ”Monte Carlo code for the study of the dynamic light field at the wavy atmosphere-ocean interface,” J. Europ. Opt. Soc. Rap. Public. 8, 13039 (2013).

H. R. Gordon and M. Wang, ”Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Optics 33, 443–452 (1994).

B. Jähne, K. O. Münnich, R. Bösinger, A. Dutzi, W. Huber, and P. Libner, ”On the parameters influencing air-water gas exchange,” J. Geophys. Res. 92, 1937–1950 (1987).

N. M. Frew, E. J. Bock, U. Schimpf, T. Hara, H. Haußecker, J. B. Edson, W. R. McGillis, et al., ”Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface films,” J. Geophys. Res. 109, C08S17 (2004).

R. Wanninkhof, W. E. Asher, D. T. Ho, C. Sweeney, and W. R. McGillis, ”Advances in quantifying air-sea gas exchange and environmental forcing,” Annu. Rev. Mar. Sci. 1, 213–244 (2009).

B. Jähne, J. Klinke, and S. Waas, ”Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).

D. J. Stilwell, ”Directional energy spectra of the sea from photographs,” J. Geophys. Res. 74, 1974–1986 (1969).

O. Kafri and I. Glatt, ”Moire Deflectometry: A Ray Deflection Approach To Optical Testing,” Opt. Eng. 24, 246944–246944– (1985).

M. Knauer, J. Kamisnski, and G. Häusler, ”Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE - Optical Metrology in Production Engineering 5457, 366–376 (2004).

C. Zappa, M. Banner, H. Schultz, A. Corrada-Emmanuel, L. Wolff, and J. Yalcin, ”Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (13pp) (2008).

C. S. Cox, ”Measurement of slopes of high-frequency wind waves,” J. Mar. Res. 16, 199–225 (1958).

R. Tober, R. Anderson, and O. Shemdin, ”Laser instrument for detecting water ripple slopes,” Appl. Optics 12, 788–794 (1973).

J. C. Scott, ”An optical probe for measuring water wave slopes,” J. Phys. E Sci. Instrum. 7, 747–749 (1974).

B. A. Hughes, R. W. Grant, and R. W. Chappell, ”A fast response surface-wave slope meter and measured wind-wave moments,” Deep-Sea Res. 24, 1211–1223 (1977).

E. J. Bock and T. Hara, ”Optical Measurements of Ripples Using a Scanning Laser Slope Gauge,” Proc. SPIE - Optics of the Air-Sea Interface 1749, 272 (1992).

W. C. Keller and B. L. Gotwols, ”Two-dimensional Optical Measurement of Wave Slope,” Appl. Optics 22, 3476–3491 (1983).

B. Jähne, Transfer processes across the free water interface (Habilitation thesis, Institut für Umweltphysik, Fakultät für Physik und Astronomie, University Heidelberg, 1985).

B. Jähne and K. Riemer, ”Two-dimensional wave number spectra of small-scale water surface waves,” J. Geophys. Res. 95, 11531–11646 (1990).

X. Zhang and C. S. Cox, ”Measuring the two-dimensional structure of a wavy water surface optically: A surface gradient detector,” Exp. Fluids 17, 225–237 (1994).

G. Balschbach, J. Klinke, and B. Jähne, ”Multichannel shape from shading techniques for moving specular surfaces,” in Proceedings of 5th European Conference on Computer Vision (ECCV), 170–184 (Freiburg, 1998).

R. Rocholz, Spatiotemporal Measurement of Short Wind-Driven Water Waves (Dissertation, Institut für Umweltphysik, Fakultät für Physik und Astronomie, University Heidelberg, 2008).

B. Jähne, Digital Image Processing (Sixth Edition, Springer, Berlin, 2005).

S. Wanner, C. Sommer, R. Rocholz, M. Jung, F. A. Hamprecht, and B. Jähne, ”A Framework for Interactive Visualization and Classification of Dynamical Processes at the Water Surface,” in 16th International Workshop on Vision, Modelling and Visualization, K. P. Peter Eisert, Joachim Hornegger, eds., 199–206 (Eurographics Association, Goslar, 2011).

R. T. Frankot and R. Chellappa, ”A Method for Enforcing Integrability in Shape from Shading Algorithms,” IEEE T. Pattern Anal. 10, 439–451 (1988).

C. Kräuter, D. Trofimova, D. Kiefhaber, N. Krah, and B. Jähne, ”High- Resolution 2-D Fluorescence Imaging of the Mass Boundary Layer at Free Water Surfaces,” to be published in J. Europ. Opt. Soc. Rap. Public. (2014).