Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

High resolution 2-D fluorescence imaging of the mass boundary layer thickness at free water surfaces

C. Kräuter, D. Trofimova, D. Kiefhaber, N. Krah, B. Jähne

Abstract


A novel 2-D fluorescence imaging technique has been developed to visualize the thickness of the aqueous mass boundary layer at a free water surface. Fluorescence is stimulated by high-power LEDs and is observed from above with a low noise, high resolution and high-speed camera. The invasion of ammonia into water leads to an increase in pH (from a starting value of 4), which is visualized with the fluorescent dye pyranine. The flux of ammonia can be controlled by controlling its air side concentration. A higher flux leads to basic pH values (pH > 7) in a thicker layer at the water surface from which fluorescent light is emitted. This allows the investigation of processes affecting the transport of gases in different depths in the aqueous mass boundary layer. In this paper, the chemical system and optical components of the measurement method are presented and its applicability to a wind-wave tank experiment is demonstrated.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14016]

Full Text: PDF

Citation Details


Cite this article

References


B. Jähne, K. O. Münnich, R. Bösinger, A. Dutzi, W. Huber, and P. Libner, ”On the parameters influencing air-water gas exchange,” J. Geophys. Res. 92, 1937–1950 (1987).

T. Münsterer, and B. Jähne, ”LIF measurements of concentration profiles in the aqueous mass boundary layer,” Exp. Fluids 25, 190–196 (1998).

I. Herlina, and G. H. Jirka, ”Experiments on gas transfer at the airwater interface induced by oscillating grid turbulence,” J. Fluid. Mech. 594, 183–208 (2008).

W. L. Peirson, J. W. Walker, C. Welch, and M. L. Banner, ”Defining the enhancement of air-water interfacial oxygen exchange rate due to wind-forced microscale waves,” in Transport at the air sea interface — Measurements, models and parameterizations, C. S. Garbe, R. A. Handler, and B. Jähne, eds., 119–131 (Springer- Verlag, Heidelberg, 2007).

S. Banerjee, D. Lakehal, and M. Fulgosi, ”Surface divergence models for scalar exchange between turbulent streams,” Int. J. Multiphas. Flow. 30, 963–977 (2004).

W. K. Melville, R. Shear, and F. Veron, ”Laboratory measurements of the generation and evolution of Langmuir circulations,” J. Fluid. Mech. 364, 31–58 (1998).

W.-T. Tsai, S.-M. Chen, and C.-H. Moeng, ”A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow,” J. Fluid. Mech. 545, 163–192 (2005).

J. Schnieders, C. S. Garbe, W. L. Peirson, G. B. Smith, and C. J. Zappa, ”Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach,” J. Geophys. Res- Oceans 118, 1272–1286 (2013).

F. Veron, and W. K. Melville, ”Experiments on the stability and transition of wind-driven water surfaces,” J. Fluid. Mech. 446, 25–65 (2001).

U. Schimpf, C. Garbe, and B. Jähne, ”Investigation of transport processes across the sea surface microlayer by infrared imagery,” J. Geophys. Res. 109, C08S13 (2004).

A. T. Jessup, C. J. Zappa, and H. Yeh, ”Defining and quantifying microscale wave breaking with infrared imagery,” J. Geophys. Res. 102, 23145–23153 (1997).

C. J. Zappa, W. E. Asher, A. T. Jessup, J. Klinke, and S. R. Long, ”Microbreaking and the enhancement of air-water transfer velocity,” J. Geophys. Res. 109, C08S16 (2004).

W. E. Asher, H. Liang, C. J. Zappa, M. R. Loewen, M. A. Mukto, T. M. Litchendorf, and A. T. Jessup, ”Statistics of surface divergence and their relation to air-water gas transfer velocity,” J. Geophys. Res. 117, C05035 (2012).

M. A. Atmane, W. E. Asher, and A. T. Jessup, ”On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface,” J. Geophys. Res. 109, C08S14 (2004).

J. W. Hiby, ”Eine Fluoreszenzmethode zur Untersuchung des Transportmechanismus bei der Gasabsorption im Rieselfilm,” Warme Stoffubertrag. 1, 105–116 (1968) in German.

O. S. Wolfbeis, E. Fürlinger, H. Kroneis, and H. Marsoner, ”Fluorimetric analysis,” Fresen. Z. Anal. Chem. 314, 119–124 (1983).

Y. Avnir, and Y. Barenholz, ”pH determination by pyranine: medium-related artifacts and their correction,” Anal. Biochem. 347, 34–41 (2005).

R. Barnadas-Rodríguez, and J. Estelrich, ”Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972–1982 (2009).

J. R. Lakowicz, Principles of fluorescence spectroscopy (3rd edition, Springer, New York, 2006).

B. Jähne, P. Libner, R. Fischer, T. Billen, and E. J. Plate, ”Investigating the transfer process across the free aqueous boundary layer by the controlled flux method,” Tellus 41, 177–195 (1989).

D. Kiefhaber, S. Reith, R. Rochholz, and B. Jähne, ”High-speed imaging of short wind waves by shape from refraction,” J. Europ. Opt. Soc. Rap. Public. 9, 14015 (2014).