Journal of the European Optical Society - Rapid publications, Vol 9 (2014)
Digital in-line holography assessment for general phase and opaque particle
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14021]
Citation Details
Cite this article
References
S. Coëtmellec, N. Verrier, M. Brunel, and D. Lebrun, â€General formulation of digital in-line holography from correlation with a chirplet function,†J. Europ. Opt. Soc. Rap. Public. 5, 10027 (2010).
M. Brunel, H. Shen, S. Coëtmellec, D. Lebrun, and K. Aït Ameur, â€Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,†Appl. Phys. B-Lasers O. 106, 583–591 (2012).
M. Brunel, H. Shen, S. Coëtmellec, D. Lebrun, and K. Aït Ameur, â€Phase contrast metrology using digital in-line holography: general models and reconstruction of phase discontinuities,†J. Quant. Spectrosc. Ra. 126, 113–121 (2012).
H. Shen, S. Coëtmellec, and M. Brunel, â€Simultaneous 3D location and size measurement of spherical bubbles using cylindrical interferometric out-of-focus imaging,†J. Quant. Spectrosc. Ra. 131, 153–159 (2012).
Y. Gu, and G. Gbur, â€Scintillation of Airy beam arrays in atmospheric turbulence,†Opt. Lett. 35, 3456–3458 (2010).
L. Wind, L. Hofer, A. Nagy, P. Winkler, A. Vrtala, and W. Szymanski, â€Light scattering from droplets with inclusions and the impact on optical measurement of aerosols,†J. Aerosol Sci. 35, 1173–1188 (2004).
A. Quérel, P. Lemaitre, and E. Porcheron, â€Caractérisation des écoulements d’air produits lors de la chute d’une goutte de pluie,†in Proceedings to the 13th Congrès Francophone de Techniques Laser, 193–201 (CORIA, Rouen, 2012) in French.
J. Wang, G. Gouesbet, G. Gréhan, Y. Han, and S. Saengkaew, â€Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,†J. Opt. Soc. Am. 28, 1849–1859 (2011).
K. Y. Lai, N. Dayan, and M. Kerker, â€Scavenging of aerosol particles by a falling water drop,†J. Atmos. Sci. 35, 674–682 (1978).
S. A. Collins, â€Lens-system diffraction integral written in terms of matrix optics,†J. Opt. Soc. Am. 60, 1168–1177 (1970).
T. Alieva, and M. J. Bastiaans, â€Properties of the linear canonical integral transformation,†J. Opt. Soc. Am. A 24, 3658–3665 (2007).
R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966).
H. M. Ozaktas, Z. Zalevsky, and M. Alper Kutay, The Fractional Fourier Transform: with Applications in Optics and Signal Processing (Wiley, Chicester, 2001).
Y. Cai, and Q. Lin, â€Propagation of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatialfrequency domain,†Opt. Laser Technol. 34, 415–421 (2002).
N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, â€Micropipe flow visualization using digital in-line holographic microscopy,†Opt. Express 18, 7807–7819 (2010).
N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, â€Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,†J. Opt. Soc. Am. A 25, 1459–1466 (2008).
C. Zheng, D. Zhao, and X. Du, â€Analytical expression of elliptical Gaussian beams through nonsymmetric systems with an elliptical aperture,†Optik 117, 296–298 (2005).
J. J. Wen, and M. A. Breazeale, â€A diffraction beam expressed as the superposition of Gaussian beams,†J. Acoust. Soc. Am. 83, 1752–1756 (1988).
X. Du, and D. Zhao, â€Propagation of decentered elliptical Gaussian beams in apertured and nonsymmetrical optical systems,†J. Opt. Soc. Am. A 23, 625–631 (2006).
X. Du, and D. Zhao, â€Propagation of elliptical Gaussian beams in apertured and misaligned optical systems,†J. Opt. Soc. Am. A 23, 1946–1950 (2006).
X. Du, and D. Zhao, â€Propagation of elliptical Gaussian beams modulated by an elliptical annular aperture,†J. Opt. Soc. Am. A 24, 444–450 (2007).
A. J. E. M. Janssen, â€New analytic results for the Zernike circle polynomials from a basic result in the Nijboer-Zernike diffraction theory,†J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011).
A. J. E. M. Janssen, â€Computation of Hopkins’ 3-circle integrals using Zernike expansions,†J. Eur. Opt. Soc. Rapid. Public. 6, 11059 (2011).
A. J. E. M. Janssen, â€Extended Nijboer-Zernike approach for the computation of optical point-spread functions,†J. Opt. Soc. Am. A 19, 849–857 (2002).
S. van Haver, and A. J. E. M. Janssen, â€Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,†J. Eur. Opt. Soc. Rapid. Public. 8, 13044 (2013).
F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. Janssen, â€Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,†J. Opt. Soc. Am. A 22, 2569–2577 (2005).
J. Braat, P. Dirksen, and A. J. E. M. Janssen, â€Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,†J. Opt. Soc. Am. A 19, 858–870 (2002).
W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, â€Digital in-line holography for biological applications,†PNAS 98, 11301–11305 (2001).
S. Coëtmellec, D. Lebrun, and C. Özkul, â€Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform,†Appl. Opt. 41, 312–319 (2002).
V. Namias, â€The fractional order Fourier transform and its application to quantum mechanics,†IMA J. Appl. Math. 25, 241–265 (1980).
A. C. McBride, and F. H. Kerr, â€On Namias’s fractional Fourier transforms,†IMA J. Appl. Math. 39, 159–175 (1987).
A. W. Lohmann, â€Image rotation, Wigner rotation, and the fractional Fourier transform,†J. Opt. Soc. Am. A 10, 2181–2186 (1993).
N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, â€Digital in-line holography in thick optical systems: application to visualization in pipes,†Appl. Opt. 47, 4147–4157 (2008).
S. Coëtmellec, C. Remacha, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, â€Digital in-line holography with a spatially partially coherent beam,†J. Europ. Opt. Soc. Rap. Public. 6, 11060 (2011).
M. Leclercq, and P. Picart, â€Digital Fresnel holography beyond the Shannon limits,†Opt. Express 20, 18303–18312 (2012).
X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, et al., â€Holography and micro-holography of particle fields: a numerical standard,†Opt. Commun. 285, 3013–3020 (2012).
F. Lamadie, L. Bruel, and M. Himbert, â€Digital holographic measurement of liquid–liquid two-phase flows,†Opt. Laser. Eng. 50, 1716–1725 (2012).
F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, â€Near-field Lorenz-Mie theory and its application to microholography,†Appl. Opt. 23, 4140–4148 (1984).
J. Goodman, Introduction To Fourier Optics (Roberts and Company Publishers, Englewood, 2005).
R. M. Aarts, and A. J. Janssen, â€On-axis and far-field sound radiation from resilient flat and dome-shaped radiators,†J. Acoust. Soc. Am. 125, 1444–1455 (2009).
J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, â€Extended Nijboer–Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,†J. Opt. Soc. Am. A 20, 2281–2292 (2003).
M. J. Bastiaans, and T. Alieva, â€Signal representation on the angular Poincaré sphere, based on second-order moments,†J. Opt. Soc. Am. A 27, 918–927 (2010).
M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
W. J. Tango, â€The circle polynomials of Zernike and their application in optics,†Appl. Phys. 13, 327–332 (1977).
H. Takahasi, and M. Mori, â€Double exponential formulas for numerical integration,†Publ. RIMS, Kyoto Univ. 9, 721–741 (1974).
M. Muhammad, and M. Mori, â€Double exponential formulas for numerical indefinite integration,†J. Comput. Appl. Math. 161, 431–448 (2003).
M. Mori, â€Discovery of the double exponential transformation and its developments,†Publ. RIMS, Kyoto Univ. 41, 897–935 (2005).
C. Van Der Avoort, J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, â€Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,†J. Mod. Optic. 52, 1695–1728 (2005).