Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

An alternative method for phase-unwrapping of interferometric data

E. de la Rosa-Miranda, E. Gonzalez-Ramirez, J. J. Villa-Hernandez, L. R. Berriel-Valdos, C. Olvera-Olvera, J. I. de la Rosa-Vargas, T. Saucedo-Anaya, J. G. Arceo Olague, D. Alaniz-Lumbreras, V. M. Castano

Abstract


In this paper we present a novel algorithm for phase unwrapping where only a subset of data from the wrapped phase map is used to reconstruct the unwrapped phase map as a linear combination of radial basis functions (RBF’s). For noisy phase maps this algorithm gives better results than three reference algorithms based on radial basis functions, Zernike polynomials and path dependent phase unwrapping strategies.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14040]

Full Text: PDF

Citation Details


Cite this article

References


C. M. Vest, Holographic Interferometry (John Wiley & Sons, New York, 1979).

K. J. Gasvik, Optical Metrology (Wiley, New York, 1987).

M. Takeda, H. Ina, and S. Kobayashi, ”Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” J. Opt. Soc. Am. A 72, 156–159 (1981).

D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).

J. Villa, I. de la Rosa, G. Miramontes, and J. A. Quiroga, ”Phase recovery from a single fringe pattern using an orientational vector field regularized estimator,” J. Opt. Soc. Am. A, 22, 2766–2773 (2005).

L. Guerriero, G. Nico, G. Pasquariello, and S. Stramaglia, ”New regularization scheme for phase unwrapping,” Appl. Optics 37(14), 3053–3058 (1998).

M. Rivera and J. L. Marroquin, ”Half-quadratic cost functions for phase unwrapping,” Opt. Lett. 29(5), 504–506 (2004).

B. Ströbel, ”Processing of interferometric phase maps as complexvalued phasor images,” Appl. Optics 35, 2192–2198 (1996).

D.C. Ghiglia, and M.D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (Wiley, New York, 1998).

B. R. Hunt, ”Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69(3), 393–399 (1979).

D. C. Ghiglia, and L. A. Romero, ”Robust Two-Dimensional Weighted and Unweighted, Phase Unwrapping for Uses Fast Transform and Iterative Methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).

J. Villa Hernández, I. de la Rosa Vargas, and Enrique de la Rosa Miranda, ”Radial Basis Functions for Phase Unwrapping,” Computación y Sistemas 14, 145–150 (2009).

J. Arines, ”Least-squares modal estimation of wrapped phases: Application to phase unwrapping,” Appl. Optics 42(17), 3373–3378 (2003).

G. H. Golub, and C. F. Van Loan, Matrix Computations (The John Hopkins University Press, Maryland, 1996).

V. Lyuboshenko, H. Mâtre, and A. Maruani, ”Least-Mean-Squares Phase Unwrapping by Use of an Incomplete Set of Residue Branch Cuts,” Appl. Optics 41, 2129–2148 (2002).

Y. Lu, X. Wang, and X. Zhang, ”Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map,” Optik 118(2), 62–66 (2007).

S. B. Kim, and Y. S. Kim, ”Least Squares Phase Unwrapping in Wavelet Domain,” IEE P.-Vis. Image Sign. 152(3), 261–267 (2005).