Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Optical-fiber thermal-wave-cavity technique to study thermal properties of silver/clay nanofluids

M. Noroozi, S. Radiman, A. Zakaria, K. Shameli, M. Deraman, S. Soltaninejad, A. Abedini

Abstract


Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10−3 to 1.789×10−3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14046]

Full Text: PDF

Citation Details


Cite this article

References


J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, ”Novel thermal properties of nanostructured materials,” J. Metastab. Nanocryst. 2, 629–634 (1999).

R. G. Fuentes, J. A. P. Rojas, J. L. J. Pérez, and J. F. S. Ramirez, ”Study of thermal diffusivity of nanofluids with bimetallic NPs with Au (core)/Ag (shell) structure,” Apsusc. 255(3), 781–783 (2008).

H. Huang, and Y. Yang, ”Preparation of silver nanoparticles in inorganic clay suspensions,” Compos. Sci. Technol. 68, 2948–2953 (2008).

R. A. Patakfalvi, A. Oszka, and I. Dekany, ”Synthesis and characterization of silver nanoparticles/kaolinite composites,” Colloid. Surface. A 220, 45–54(2003).

M. B. Ahmad, K. Shameli, M. Darroudi, and W. Yunus,”Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method,” American Journal of Applied Sciences, 6(11), 1909–1914 (2009).

R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, ”Effect of aggregation on thermal conduction in colloidal nanofluids,” Appl. Phys. Lett. 89(14), 143119 (2006).

S. A. Putnam, D. G. Cahill, and P. V. Braun, ”Thermal conductivity of nanoparticle suspensions,” J. Appl. Phys. 99, 084308 (2006).

P. Keblinski, J. A. Eastman, and D. G. Cahill ”Nanofluids for thermal transport,” Mater. Today 8(6), 36–44 (2005).

S. M. S. Murshed, K. C. Leong, and C. Yang, ”Enhanced thermal conductivity of TiO2 - water based nanofluids,” Int. J. Therm. Sci. 44, 367–373 (2005).

C. Kleinstreuer, and Y. Feng, ”Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review,” Nanoscale Res. Lett. 6, 229 (2011).

S. M. S. Murshed, K. C. Leong, and C. Yang, ”Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique,” J. Phys. D: Appl. Phys. 39, 5316–5322 (2006).

R. Zamiri, B. Z. Azmi, E. Shahriari, and K. Naghavi, ”Thermal diffusivity measurement of silver nanofluid by thermal lens technique,” J. Laser Appl. 23, 042002 (2011).

X. Zhang, H. Gu, and M. Fujii, ”Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles,” J. Appl. Phys. 100, 044325 (2006).

J. Shen, and A. Mandelis, ”Thermal-wave resonator cavity,” Rev. Sci. Instrum. 66, 4999–5005 (1995).

B. Z. Azmi, M. Noroozi, Z. Rizwan, Z. A. Sulaiman, Z. A. Wahab, and M. M. Moksin, ”Simple TWRC technique by using optical fiber,” Infrared Phys. Techn. 51(3), 270–275 (2008).

M. Noroozi, B. Z. Azmi, and M. M. Moksin, ”The reliability of optical fiber-TWRC technique in liquids thermal diffusivity measurement,” Infrared Phys. Techn. 53(3), 193–196 (2010).

A. Matvienko, and A. Mandelis, ”Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three- dimensional geometries,” Rev. Sci. Instum. 77, 1–9 (2006).

J. Philip, and M. R. Nisha, ”Thermal diffusion in dilute nanofluids investigated by photothermal interferometry,” J. Phys.: Conf. Ser. 214, 012035 (2010).

K. C. Song, M. S. Lee, T. S. Park, and B. S. Lee, ”Preparation of colloidal silver nanoparticles by chemical reduction method,” Korean J. Chem. Eng. 26, 153–155 (2009).

I. Dekany, and R. Patakfalvi, ”Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes,” Appl. Clay Sci. 25, 149–159 (2004).

M. D. Fan, P. Yuan, T. H. Chen, H. P. He, and A. H. Yuan, ”Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite,” Chin. Sci. Bull. 55(11), 1092–1099 (2010).

R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, ”Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment,” Nanoscience and Nanotechnology Letters 4, 30–34 (2012).

J. A. Balderas-Lopez, ”Thermal effusivity measurements for liquids: A self-consistent photoacoustic methodology,” Rev. Sci. Instrum. 78, 064901—064904 (2007).

B. Z. Azmi, L. T. Sing, E. B. Saion, and Z. A. Wahab, ”Thermal wave interferometry of gas-liquid using optical fibre thermal wave resonator cavity technique,” J. Sci. Technol. 14, 33–40 (2006).

G. Pan, and A. Mandelis, ”Measurements of the thermodynamic equation of state via the pressure dependence of thermophysical properties of air by a thermal-wave resonant cavity,” Rev. Sci. Instrum. 69, 2918–2923 (1998).

G. A. López-Muñoz, and J. A. Balderas-López, ”Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes,” Nanoscale Res. Lett. 7(1), 667 (2012).

C. H. Chon, and K. D. Kihm, ”Thermal conductivity enhancement of nanofluids by Brownian motion,” J. Heat Transf. 127, 810 (2005).

R. Prasher, P. E. Phelan, and P. Bhattacharya, ”Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid),” Nano Lett. 6(7), 1529–1534 (2006).