Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Design of a high efficiency CdS/CdTe solar cell with optimized step doping, film thickness, and carrier lifetime of the absorption layer

S. Khosroabadi, S. H. Keshmiri, S. Marjani

Abstract


A high-efficiency CdS/CdTe solar cell with step doped absorber layer, optimized back surface field layer, and long carrier lifetime in the absorption layer was designed. At first, The CdS/CdTe reference cell is simulated and compared with previous experimental data. In order to obtain the highest efficiency, the thickness and step doping of the absorber and back surface field layer were optimized. In addition, the effect of carrier lifetime variation in the CdTe layer on the conversion efficiency of CdTe cell was investigated. Compared with reference cell, Efficiency enhancement of the proposed structure was 4.44%. Under global AM 1.5 conditions, the optimized cell structure had an open-circuit voltage of 0.987 V, a short-circuit current density of 27.9 mA/cm^2 and a fill factor of 82.4%, corresponding to a total area conversion efficiency of 22.76%.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14052]

Full Text: PDF

Citation Details


Cite this article

References


S. Khosroabadi, and S. H. Keshmiri, ”Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector,” Opt. Express. 22, A921-A929 (2014).

N. Amin, K. Sopianb, and M. Konagai, ”Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness ,” Sol. Energ. Mat. Sol. C. 91(13), 1202–1208 (2007).

L. V. Krishnakumar, J. Han, A. Klein, and W. Jaegermann, ”CdTe thin film solar cells with reduced CdS film thickness,” Thin Solid Films 519(7), 7138–7141 (2011).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, ”Solar cell efficiency tables (Version38),” Prog. Photovoltaics Res. Appl. 19(5), 84–92 (2011).

L. A. Kosyachenko, A. I. Savchuk, and E. V. Grushko, ”Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure,” Thin Solid Films 517(7), 2386–2391 (2009).

J. Britt, and C. Ferekides, ”Thin film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).

J. L. Peñaa, O. Arésa, V. Rejóna, A. Rios-Floresa, J. M. Camachoa, N. Romeob, and A. Bosiob, ”A detailed study of the series resistance effect on CdS/CdTe solar cells with Cu/Mo back contact,” Thin Solid Films 520(2), 680–683 (2011).

E. Colegrove, R. Banai, C. Blissett, C. Buurma, J. Ellsworth, M. Morley, S. Barnes, et al., ”High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass,” J. Electron. Mater. 41(10), 2833–2837 (2012).

T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, ”Solar photovoltaic electricity: Current status and future prospects,” Sol. Energy. 85(8), 1580–1608 (2011).

A. Rios-Flores, O. Arés, J. M. Camacho, V. Rejon, and J. L. Peña, ”Procedure to obtain higher than 14% efficient thin film CdS/CdTe solar cells activated with HCF2Cl gas,” Sol. Energy. 86(2), 780–785 (2012).

T. Aramoto, H. Ohyama, and S. Kumazawa, ”16.0% Efficient thin film CdS-CdTe solar,” Jpn. J. Appl. Phys. 36(10), 6304–6305 (1997).

X. Wu, J. C. Keane, R. G. Dhere, C. Dehart, D. S. Albin, A. Duda, T. A. Gessert, et al., ”16.5% Efficient CdS/CdTe polycrystalline thin film solar cell,” in Proceedings of 17th Conf. IEEE European Photovoltaic Solar Energy 995–1000 (IEEE, Munich, 2011).

First Solar Inc., http://investor.firstsolar.com/releasedetail.cfm? (2014).

N. R. Paudel, K. A. Wieland, A. D. Compaan, ”Ultrathin CdS/CdTe solar cells by sputtering,” Sol. Energ. Mat. Sol. C. 105, 109–112 (2012).

Silvaco Inc, http://www.silvaco.com/products/device_simulation/ atlas.html (2010).

J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J. V. Li, et al., ”Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time-Resolved Photoluminescence and First-Principles Calculations,” Phys. Rev. Lett. 111, 1–5 (2013).