Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Ritchey–Common test for a 1.5 m–diameter flat mirror

S. Zhu, X. H. Zhang

Abstract


This study intensively investigates the Ritchey–Common test to enable high-precision measurement of a plane mirror figure with a diameter of 1.5 m. We present a method for separating the adjustment error combined with tested data and the least–square method. We also use the transformation relationship of coordinates and amplitude between the test system pupil plane and the flat mirror to calculate the flat mirror surface error. Ritchey–Common test is conducted on a 100 mm–diameter plane mirror. Results prove that the algorithm can effectively isolate the adjusting–error effect. Compared with the direct test results from interferometer, the RMS calculation accuracy of the algorithm is better than λ/100 (λ = 0.6328 µm). Accordingly, we build a Ritchey–Common test light path for the 1.5 m plane mirror. After analyzing the factors affecting the experiment results, we obtain the surface PV value of 0.391 l and RMS of 0.0181 λ. Finally the test achieves full aperture detection for a large–diameter plane mirror surface.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14053]

Full Text: PDF

Citation Details


Cite this article

References


J. E. Yellowhair, Advanced technologies for fabrication and test of large flat mirrors (Ph.D. Dissertation, University of Arizona, Tucson, 2007).

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. Peter Herzig, ”Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).

S. Zhu, and X. H. Zhang, ”Application of error detach technology in Ritchey-Common test for flat mirror,” Opt. Precision Eng. 22, 7–12 (2014).

M. S. Bai, P. Li, J. K. Zhang, and L. Teng, ”Improvement on nonuniformity for sphere mirrors with large radius of curvature,” Opt. Precision Eng. 21, 554–560 (2013).

H. Ren, L. Ma, X. Liu, Y. He, W. G. Wan, and R. H. Zhu, ”Optical element test with multiple surface interference,” Opt. Precision Eng. 19, 1144–1150 (2013).

X. F. Fan, W. T. Zheng, and D. J. Singh, ”Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3, e179, 1–14 (2014).

P. Girshovitz, and N. T. Shaked, ”Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151, 1–9 (2014)

D. Malacala, Optical Shop Testing (Wiley, New York, 2007).

Z. H. Tian, Z. G. Shi, W. Q. Liu, H. J. Yang, and Y. X. Sui, ”Highaccuracy measurement for radius of curvature and its uncertainties,” Opt. Precision Eng. 21, 2496–2501 (2013).

J. Liu, E. L. Miao, Y. Qi, Y. X. Sui, and H. J. Yang, ”Measurement of optical surface based on intensity self-calibration phase-shift algorithm,” Opt. Precision Eng. 22, 2008–2013 (2014)

K. L. Shu, ”Ray–trace analysis and data reduction methods for the Ritchey–Common test,” Appl. Optics 22, (12), 1879–1886 (1983).

S. Han, E. Novak, and M. Schurig, ”Application of Ritchey-Common test in large flat measurements,” Proc. SPIE 4399, 131–136 (2001)

S. Han, E. Novak, and M. Schuring, ”Ritchey-Common Test used for Measurement of Astronomical Optic,” Proc. SPIE 4842, 270–273 (2003).

ZYGO Corporation, Ritchey-Common Metro-Pro Application [M], (ZYGO Corporation, Connecticut, 2004).

S. Zhu, and X. H. Zhang, ”Eliminating alignment error and analyzing Ritchey angle accuracy in Ritchey-Common test,” Opt. Commun. 311, 368–374 (2013).