Journal of the European Optical Society - Rapid publications, Vol 9 (2014)
Subsurface disorder and electro-optical properties of proton-exchanged LiNbO3 waveguides produced by different techniques
Abstract
It has been established, that proton-exchanged LiNbO3 waveguides have a marked subsurface layer with structural disorder inducing degradation of electro-optical properties of these waveguides. At the same time, such a subsurface disorder is found to be less pronounced in soft proton-exchanged (SPE) waveguides in comparison with annealed proton-exchanged (APE) ones. The experimental samples of phase modulators fabricated by SPE technique exhibit a better electro-optical efficiency compared to the LiNbO3 modulators produced by the standard and improved APE techniques.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14055]
Citation Details
Cite this article
References
M. Rottschalk, A. Rasch, and W. Karthe, â€Electrooptic behaviour of proton-exchanged LiNbO3 optical waveguides,†J. Opt. Commun. 9, 19–23 (1988).
A. Loni, R. M. De La Rue, and J. M. Winfield, â€Very low-loss protonexchanged waveguides with a substantially restored electro-optic effect,†in Proceedings of Topical Meeting on Integrated and Guided Wave Optics, Paper MD3-1, (TX, Houston, 1989).
T. T. Lay, Y. Kondo, and Y. Fujii, â€Effect of annealing on electrooptic constant of undoped and the MgO-doped lithium niobate optical waveguides,†IEICE T. Electron 74, 3870–3872 (1991).
R. Narayan, â€Electrooptic coefficient variation in proton-exchanged and annealed lithium niobate samples,†IEEE J. Sel. Top. Quant. 3, 796–807 (1997).
H. G. Muller, A. D. Stapleton, B. J. Foran, G. Radhakrishnan, H. I. Kim, P. M. Adams, and R. A. Lipeles, â€Reduction of lattice defects in proton-exchanged lithium niobate waveguides,†J. Appl. Phys. 110, 033539 (2011).
S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, A. N. Alkaev, V. Kritzak, P. Moretti, and S. Tascu, â€Leakage of a guided mode caused by static and light-induced inhomogeneities in channel HTPE-LiNbO3 waveguides,†Proc. SPIE. 4944, 346–352 (2003).
F. Laurell, M. G. Roelofs, and H. Hsiung â€Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguidesâ€, Appl. Phys. Lett. 60, 301–303 (1992).
S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, â€Electro-Optical properties of different HxLi1-xNbO3 phases in proton-exchanged LiNbO3 waveguides,†Ferroelectrics 440, 47–56 (2012).
L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, and L. Huang, â€Soft Proton Exchange on PPLN: a simple waveguide fabrication process for highly efficient nonlinear interactions,†Appl. Phys. Lett. 76, 1089 (2000).
D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M.P. De Micheli, and P. Baldi, â€Soft proton exchange tapers for low-insertion loss LiNbO3 devices,†J. Lightwave Technol. 25, 1588–1593 (2007).
M. P. De Micheli, â€Fabrication and Characterization of Proton Exchanged Waveguides in Periodically Poled Congruent Lithium Niobate,†Ferroelectrics 340, 49–62, (2006).
M. De Micheli, D. Ostrowsky, J. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, â€Crystalline and optical quality of proton exchanged waveguides,†J. Lightwave Technol. 4, 743–745 (1986).
Y. N. Korkishko, V. A. Fedorov, M. De Micheli, K. El Hadi, P. Baldi, and A. Leycuras. â€Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,†Appl. Optics 35, 7056–7060 (1996).
Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, et al., â€Characterization of a-phase soft proton-exchanged LiNbO3 optical waveguidesâ€, J. Opt. Soc. Am. A. 18, 1186–1191 (2001).
A. S. Barker, and A. J. Sievers, â€Optical studies of the vibrational properties of disordered solidsâ€, Rev. Mod. Phys. 47, 1–179 (1975).
H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, â€Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,†J. Appl. Phys. 77, 4467–4476 (1995).
S. H. Wemple, M. Di Domenico, and I. Camlibel, â€Relationship between linear and quadratic electro-optic coefficients in LiNbO3,†Appl. Phys. Lett. 12, 209–212 (1968).
M. Di Domenico, and S. H. Wemple, â€Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,†J. Appl. Phys. 40, 720–732 (1969).
M. Kuneva, and S. Tonchev, â€Spectroscopy of optical waveguiding layersâ€, Bulg. Chem. Commun. 43, 276–287 (2011).
G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. Tong Lee, and L. M. Salter, â€Characterization of proton-exchange lithium-niobate wave-guides,†J. Appl. Phys. 76, 3981–3987 (1994).
I. P. Kaminow, and W. D. Johnston, â€Quantitative determination of sources of electro-optic effect in LiNbO3 and LiTaO3,†Phys. Rev. 160, 519–522 (1967).