Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Digital in-line holography in a droplet with cavitation air bubbles

S. Coetmellec, D. Pejchang, D. Allano, G. Grehan, D. Lebrun, M. Brunel, A. J. E. M. Janssen

Abstract


In this publication, the modelisation of an air bubble as inclusion in a droplet is treated from scalar theory point of view (Fresnel’s theory). The elaborated model is compared with Lorenz–Mie scattering theory and with an experimental results. Circle polynomials and scaled pupil function are the background of this work to take into account the critical angle effect that arises at a transition from a higher index to a lower index medium.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14056]

Full Text: PDF

Citation Details


Cite this article

References


W. Lauterborn, and W. Hentschel, ”Cavitation bubble dynamics studied by high-speed photography and holography,” Ultrasonics 23, 260–268 (1985).

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, ”Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).

L. Méès, N. Grosjean, D. Chareyron, J. L. Marié, M. Seifi, and C. Fournier, ”Evaporating droplet hologram simulation for digital in-line holography set-up with divergent beam,” J. Opt. Soc. Am. A 30, 2021–2028 (2013).

G. Gréhan, F. Onofri, T. Girasole, G. Gouesbet, F. Durst, and C. Tropea, ”Measurement of bubbles by Phase Doppler technique and trajectory ambiguity,” in Developments in laser techniques and applications to fluid mechanics, R. J. Adrian, D. F. G. Du˜rao, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds., 290–302 (Springer-Verlag, Berlin, 1996).

H. Shen, S. Saengkaew, G. Gréhan, S. Coëtmellec, and M. Brunel, ”Interferometric out-of-focus imaging for the 3D tracking of spherical bubbles in a cylindrical channel,” Opt. Commun. 320, 156–161 (2014).

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A. J. E. M. Janssen, ”Digital in-line holography assessment for general phase and opaque particle,” J. Europ. Opt. Soc. Rap. Public. 9, 14021 (2014).

S. A. Collins, ”Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).

T. Alieva, and M. J. Bastiaans, ”Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966).

M. J. Bastiaans, and T. Alieva, ”Signal representation on the angular Poincaré sphere, based on second-order moments,” J. Opt. Soc. Am. A 27, 918–927 (2010).

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The fractional Fourier transform: with applications in optics and signal processing (Wiley, Chichester, 2001).

Y. Cai, and Q. Lin, ”Propagation of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatialfrequency domain,” Opt. Laser Technol. 34, 415–421 (2002).

N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, ”Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).

N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, ”Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A 25, 1459–1466 (2008).

M. Born, and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).

A. J. E. M. Janssen, and P. Dirksen, ”Concise formula for the Zernike coefficients of scaled pupils,” J. Microlith. Microfab. 5, 030501 (2006).

A. J. E. M. Janssen, ”New analytic results for the Zernike circle polynomials from a basic result in the Nijboer–Zernike diffraction theory,” J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011).

F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, ”Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005).

S. van Haver, and A. J. E. M. Janssen, ”Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer–Zernike theory,” J. Eur. Opt. Soc. Rap. Public. 8, 13044 (2013).

X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, et al., ”Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).

R. M. Aarts, and A. J. E. M. Janssen, ”On-axis and far-field sound radiation from resilient flat and dome-shaped radiators,” J. Acoust. Soc. Am. 125, 1444–1455 (2009).

S. Coëtmellec, D. Lebrun, and C. Özkul, ”Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform,” Appl. Opt. 41, 312–319 (2002).

V. Namias, ”The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980).

L. Bernardo, and O. Soares, ”Optical fractional Fourier transforms with complex orders,” Appl. Opt. 35, 3163–3166 (1996).

P. Pellat-Finet, and E. Fogret, ”Complex order fractional Fourier transforms and their use in diffraction theory. Application to optical resonators,” Opt. Commun. 258, 103–113 (2006).

A. J. E. M. Janssen, ”Computation of Hopkins’ 3-circle integrals using Zernike expansions,” J. Europ. Opt. Soc. Rap. Public. 6, 11059 (2011).

M. Abramowitz, and I. Stegun, Handbook of mathematical functions (Dover Publications, New York, 1970).

W. J. Tango, ”The circle polynomials of Zernike and their application in optics,” Appl. Phys. 13, 327–332 (1977).

F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, ”Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005).

A. J. E. M. Janssen, ”Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).