Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys

S. M. R. Darbani, M. Ghezelbash, A. E. Majd, M. Soltanolkotabi, H. Saghafifar

Abstract


In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14058]

Full Text: PDF

Citation Details


Cite this article

References


A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).

R. Noll, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Springer, New York, 2012).

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, et al., ”Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: Beyond the Mc Whirter criterion,” Spectrochim. Acta B 65, 86–95, (2010).

D. A. Cremers, and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, Haboken, 2006).

J. P. Singh, and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007).

S. Z. Mortazavi, P. Parvin, M. R. M. Pour, A. Reyhani, A. Moosakhani, and S.Moradkhani, ”Time-Resolved evolution of metal plasma induced by Q-Switched Nd:YAG and ArF-excimer laser,” Opt. Laser Technol. 62, 32–39 (2014).

V. Bulatov, R. Kransniker, and I. L. Schechter, ”Converting spatial to pseudo resolution in laser plasma analysis by simultaneous multifiber spectroscopy,” Anal. Chem. 12, 2987–2994 (2000).

L. Yaoming, J. Spenczak, and R. J. Gordon, ”Nanosecond polarization-resolved laser-induced breakdown spectroscopy,” Opt. Lett. 35, 112–114 (2010).

A. E. Majd, A. S. Arabanian, and R. Massudi, ”Polarization resolved laser induced breakdown spectroscopy by single shot nanosecond pulsed Nd:YAG laser,” Opt. Laser. Eng. 48, 750–753 (2010).

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, ”Effect of target composition on the emission enhancement observed in double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta B 63, 312–323 (2008).

V. N. Rai, J. P. Singh, F. Y. Yueh, and R. L. Cook, ”Study of optical emission from laser-produced expanding across an external magnetic field,” Laser Part. Beams 21, 65–71 (2003).

S. Palanco, L. M. Cabalin, D. Romero, and J. J. Laserna, ”Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. Atom. Spectrom. 14, 1883–1887 (1999).

S. H. Tavassoli, and A. Gragossian, ”Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser. Eng. 41, 481–485 (2009).

J. Scaffidi, W. Pearman, J. Chance, J. Carter, B. W. Colston, and S. Angel, ”Effects of sample temperature in femtosecond singlepulse laser-induced breakdown spectroscopy,” Appl. Optics 43, 2786–2790 (2004).

C. F. Su, S. Feng, J. P. Singh, F.-Y. Yueh, I. I. I. J. T. Rigsby, D. L. Monts, et al., ”Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, et al., ”Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. Atom. Spectrom. 20, 552–556 (2005).

R. Sangines, H. Sobral, and E. Alvarez-Zauco, ”The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta B 68, 40–45 (2012).

C. Hanson, S. Phongikaroon, and J. R. Scott, ”Temperature effect on Laser-induced breakdown spectroscopy spectra of molten and solid salts,” Spectrochim. Acta B 97, 76–85 (2014).

S. Eschlbock-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rossler, et al., ”Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta B 87, 36–42 (2013).

S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, ”Dual- Laser-Beam-Induced Breakdown Spectroscopy of Copper using simultaneous continuous wave CO2 and Q-Switched Nd:YAG lasers,” Appl. Spectrosc. 63, 423–429 (2009).

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, ”Simulation of nanosecond pulsed laser ablation of copper samples: A focuse on laser induced plasma radiation,” J. Appl. Phys. 104, 053303–053309 (2008).

S. Palanco, L. M. Cabalin, D. Romero, and J. J. Laserna, ”Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures,” J. Anal. Atom. Spectrom. 14, 1883–1887 (1999).

Material Properties Data, http://matweb.com/search/datasheet. aspx.

D. Bauerl Laser Processing and chemistry (Springer, Berlin / Heidelberg, 2000).

Refractive Index Database, http://Refractiveindex.info/legacy/.

B. Salle, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, ”Comparative studies of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, ”New Procedure for quantitative element analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).

NIST atomic spectra database, http://physics.nist.gov/ physRefdata/ASD/.

KURUCZ atomic spectral line database, http://www.pmp. uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur/sekur.html.

H. R.Griem, Spectral Line Broadening by Plasmas. New York and London: A Subsidiary of Harcourt Brace Jovanovich (Academic Press, New York, 1974).

W. Demtroder Laser Spectroscopy (Springer, Heidelberg, 2008).

G. Bekefi, C. Deutsch, and B. Yaakobi, Spectroscopic Diagnostics of Laser Plasmas (John Wiley and Sons, New York, 1976).

M. Sabsabi, and P. Cielo, ”Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).