Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

The influence of the aspheric profiles for transition zone on optical performance of human eye after conventional ablation

L. Fang

Abstract


The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14060]

Full Text: PDF

Citation Details


Cite this article

References


S. MacRae, ”Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, ”Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg 30, 2336–2343 (2004).

K. Zhao, Y. Wang, T. Zuo, and H. Wang, ”Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg. 14, S222–225 (1998).

T. Gamaly, ”LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg. 25, S927–930 (2009).

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, ”Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg. 25, 331–338 (2009).

M. C. Arbelaez , C. Vidal, B. A. Jabri, and S. Arba Mosquera, ”LASIK for myopia with Aspheric ‘aberration neutral’ ablations using the ESIRIS laser system,” J. Refract. Surg. 25, 991–999 (2009).

L. Fang, Y. Wang, and X. He, ”Effect of pupil size on residual wavefront aberration with transition zone after customized laser refractive surgery,” Opt. Express 21, 1404–1416 (2013).

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, ”Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg. 35, 695–702 (2009).

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, ”Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).

N. Yamane, K. Miyata T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, et al., ”Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” J. Invest. Ophthalmol. Vis. Sci. 45 3986–3990 (2004).

L. Wang, and D. D. Koch, ”Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract. Refract. Surg. 34, 2057–2062 (2008).

L. Fang, X. He, and F. Chen, ”Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express 18, 22418–22431 (2010).

L. Wu, X. Zhou, R. Chu, and Q. Wang, ”Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol. 19, 923–929 (2009).

S. B. Lee, B. S. Hwang, and J. Lee, ”Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg. 26, 731–743 (2010).

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, ”Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract. Refract. Surg. 36, 1718–1723 (2010).

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, ”Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol 119, 1159–1164 (2001).

L. Fang, Y. Wang, and X. He, ”Theoretical analysis of wavefront aberration caused by treatment decentration and transition zone after custom myopic laser refractive surgery,” J. Cataract Refract. Surg. (2013) article in press.

Y. Hori-Komai, I. Toda, N. Asano-Kato, M. Ito, T. Yamamoto, and K. Tsubota, ”Comparison of LASIK using the NIDEK EC-5000 optimized aspheric transition zone (OATz) and conventional ablation profile,” J. Refract. Surg. 22, 546–555 (2006).

O. Kermani, K.Schmiedt, U. Oberheide, and G. Gerten, ”Early results of nidek customized aspheric transition zones (CATz) in laser in situ keratomileusis,” J. Refract. Surg. 19, S190–194 (2003).

K. Y. Seo, J. B. Lee, J. J. Kang, E. S. Lee, and E. K. Kim, ”Comparison of higher-order aberrations after LASEK with a 6.0 mm ablation zone and a 6.5 mm ablation zone with blend zone,” J. Cataract. Refract. Surg. 30, 653–657 (2004).

J. Bühren, C. Kühne, and T. Kohnen, ”Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract. Refract. Surg. 31, 2272–2280 (2005).

M. Camellin, and S. Arba Mosquera, ”Aspheric optical zones: the effective optical zone with the SCHWIND AMARIS,” J. Refract. Surg. 27, 135–146 (2011).

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, ”Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol. 80, 224–234 (1996).

J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. Jiménez Del Barco, ”Deviations of Lambert-Beer’s law affect corneal refractive parameters after refractive surgery,” Opt. Express 14, 5411–5417 (2006).

Y. Kwon, and S. Bott, ”Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye 23, 1845–1850 (2009).

Y. Kwon, M. Choi, and S. Bott, ”Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam,” Opt. Express 16, 11808–11821 (2008).

S. Arba-Mosquera, and D. de Ortueta, ”Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express 16, 3877–3895 (2008).

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, ”Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17, 15292–15307 (2009).

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, ”Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg. 14, S199–203 (1998).

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, ”Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract. Refract. Surg. 31, 39–47 (2005).