Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Highly linear dual parallel Mach-Zehnder modulator incorporating MMI couplers
Abstract
The strict requirements on splitting ratios of optical power and radio-frequency (RF) voltage affect the performance of the Dual Parallel Mach-Zehnder modulator (DPMZM). In this paper, a modified DPMZM with three Multimode Interference (MMI) couplers (MMI-DPMZM) is proposed. The three MMI couplers, comprised of a reconfigurable one and two 3 dB ones, function as optical splitters. The theoretical analysis shows that the structure can prohibit the third-order intermodulation distortion (IMD3) from the third order term and fifth order term of the transfer function’s Taylor series, leading to the peak Spurious-Free Dynamic Range (SFDR) as high as 104.12 dB. The adjustment of the tunable MMI coupler ensures the SFDR is kept above 104.00 dB even the radio frequency (RF) signal’s voltage splitting ratio deviates from its optimum value. It is also demonstrated that the SFDR can reach 104.10 dB with the precision and uniformity of MMI couplers considered.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15004]
Citation Details
Cite this article
References
P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, â€A universal platform for ubiquitous wireless communications using Radio over FSO system,†J. Lightwave Technol. 28, 2258–2267 (2010).
M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and C. Gee-Kung, â€Radio-Over-Fiber access architecture for integrated broadband wireless services,†J. Lightwave Technol. 31, 3614–3620 (2013).
C. Chen, C. Zhang, W. Zhang, W. Jin, and K. Qiu, â€Scalable and reconfigurable generation of flat optical comb for WDM-based nextgeneration broadband optical access networks,†Opt. Commun. 321, 16–22 (2014).
T. Kanesan, W. Pang Ng, Z. Ghassemlooy, and C. Lu, â€Investigation of optical modulators in optimized nonlinear compensated LTE RoF system,†J. Lightwave Technol. 32, 1944–1950 (2014).
Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, â€Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,†J. Lightwave Technol. 29, 1105–1111 (2011).
C. J. Hansen, â€WiGiG: Multi-gigabit wireless communications in the 60 GHz band,†IEEE Wirel. Commun. 18, 6–7 (2011).
G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, â€High-Order distortion in directly modulated semiconductor lasers in high-loss analog optical links with large RF dynamic range,†J. Lightwave Technol. 29, 3577–3586 (2011).
L.M. Johnson, and H. V. Roussell, â€Reduction of intermodulation distortion in interferometric optical modulators,†Opt. Lett. 13, 928–930 (1988).
W. B. Bridges, and J. H. Schaffner, â€Distortion in linearized electrooptic modulators,†IEEE Trans. Microwave Theory Tech. 43, 2184–2197, (1995).
A. Prescod, B. B. Dingel, N. Madamopoulos, and R. Madabhushi, â€Effect of ring resonator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation,†IEEE Photon. Tech. L. 22, 1297–1299 (2010).
E. H. W. Chan, W. Zhang, and R. A. Minasian, â€Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,†J. Lightwave Technol. 30, 3672–3678 (2012).
J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, C. Zhang, C. Li, â€Optical single sideband modulation with continously tunable optical carrier-to-sideband ratio by employing a dual-parallel Mach- Zehnder modulator,†Acta Phys. Sin. 62 (2013).
S. Li, X. Zheng, H. Zhang, and B. Zhou, â€Highly linear Radioover- Fiber system incorporating a single-drive Dual-Parallel Mach- Zehnder modulator,†IEEE Photon. Tech. L. 22, 1775–1777 (2010).
Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, L. Shang, â€Microwave Generation With Photonic Frequency Sextupling Based on Cascaded Modulators,†IEEE Photon. Tech. L. 26, 1199–1202 (2014).
D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, â€Low loss MMI couplers for high performance MZI modulators,†IEEE Photon. Tech. L. 22, 1485-1487, (2010).
S. Musa, N. S. Lagali, G. Sengo, G. J. M. Krijnen, and A. Driessen, â€Design and fabrication of 1xN and NxN planar waveguide couplers for multimode fiber-based local area networks,†in Proceedings of IEEE/LEOS Benelux Chapter 2001 Annual Symposium (IEEE, Twente, 2001).
A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, and R. T. Chen, â€Optimum access waveguide width for 1xN multimode interference couplers on silicon nanomembrande,†Opt. Lett. 35, 2864–2865 (2010).
R. Thapliya, T. Kikuchi, and S. Nakamura, â€Tunable power splitter based on an electro-optic multimode interference device,†Appl. Optics 46, 4155–4161 (2007).
D. A. May-Arrioja, P. LikamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, â€A reconfigurable multimode interference splitter for sensing applications,†Measurement Science and Technol. 18, 3241–3246 (2007).
M. Bachmann, P. A. Besse, and H. Melchior, â€Overlapping-image multimode interference couplers with a reduced number of selfimages for uniform and nonuniform power splitting,†Appl. Optics 34, 6898–6910 (1995).
E. I. Ackerman, â€Broad-band Linearization of a Mach-Zehnder Electrooptic Modulator,†IEEE Trans. Microw. Theory Techniques, 47, 2271-2279 (1999).
Y. Zhang, S. Y. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. B. Jones, and M. Hochberg, â€A compact and low loss Y-junction for submicron silicon waveguide,†Opt. Express 21, 1310–1316 (2013).
A. Rajandekar, and R. Singhal, â€Voltage-controlled all-polymer reconfigurable optical power splitter,†in Proceedings of IEEE 4th International Conference on Photonics 244–246 (IEEE, Melaka, 2013).