Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Dual wavelength digital holography for 3D particle image velocimetry

S. Grare, S. Coëtmellec, D. Allano, G. Grehan, M. Brunel, D. Lebrun

Abstract


A multi-exposure digital in-line hologram of a moving particle field is recorded by two different wavelengths and at different times. As a result, during the reconstruction step, each hologram can be independently and accurately reconstructed for each wavelength. This procedure enables avoiding the superimposition of particles images that may be close to each other in multi-exposure holography. The feasibility is demonstrated by using a standard particle sizing reticle and shows the potential of this method for particle velocity measurement.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15009]

Full Text: PDF

Citation Details


Cite this article

References


H. Meng, G. Pan, Y. Pu, and S. H. Woodward, ”Holographic particle image velocimetry: From film to digital recording,” Meas. Sci. Technol. 15(4), 673 (2004).

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, ”Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12(9), 1392 (2001).

J. Sheng, E. Malkiel, and J. Katz, ”Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Optics 45(16), 3893–3901 (2006).

J. Soria, and C. Atkinson, ”Towards 3C-3D digital holographic fluid velocity vector field measurement tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19(7), 074002 (2008).

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, ” Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Optics 45(5), 864–871 (2006).

S. Coëtmellec, D. Lebrun, and C. Özkul, ”Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier Transform,” Appl. Optics 41, 312–319 (2002).

L. Onural, ”Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848,(1993).

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, ”Application of wavelet transform to hologram analysis: Threedimensional location of particles,” Opt. Laser. Eng. 33(6), 409–421 (2000).

F. Soulez, L. Denis, C. Fournier, E. Thiebaut, and C. Goepfert, ”Inverse-problem approach for particle digital holography: Accurate location based on local optimization,” J. Opt. Soc. Am. A 24(4), 1164–1171 (2007).

W. Xu, M. H. Jericho, and H. J. Kreuzer, ”Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).

N. Salah„ G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coëtmellec, ”Application of multiple exposure digital in line holography to particle tracking in a Benard von Karman vortex flow,” Meas. Sci. Technol. 19(7), 074001 (2008).

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, ”Lagrangian particle tracking in three dimensions via singlecamera in-line digital holography,” New J. Phys. 10(12), 125013 (2008).

D. Allano, M. Malek, F. Walle, F. Corbin, G. Godard, S. Coëtmellec, and D. Lebrun, ”Three-dimensional velocity near-wall measurements by digital in-line holography: Calibration and results,” Appl. Optics 52(1), A9–A17 (2013).

R. J. Adrian, ”Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005)

I. Yamaguchi, T. Matsumura, and J. I. Kato, ” Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).

J. Kühn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, et al., ”Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).

J. Dohet-Eraly, C. Yourassowsky, and F. Dubois, ”Refocusing based on amplitude analysis in color digital holographic microscopy,” Opt. Lett. 39, 1109–1112 (2014).

G. Pedrini, P. Fröning, H. J. Tiziani, and M. E. Gusev, ”Pulsed digital holography for high-speed contouring that uses a twowavelength method,” Appl. Optics 38(16), 3460–3467 (1999).

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, ”Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Optics 47(19), D38–D43 (2008).

J. M. Desse, P. Picart, and P. Tankam, ”Digital three-color holographic interferometry for flow analysis,” Opt. Express 16(8), 5471– 5480(2008).

G. Pan, and H. Meng, ”Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Optics 42(5), 827–833 (2003).