Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Optical schemes of spectrographs with a diffractive optical element in a converging beam

E. R. Muslimov, N. K. Pavlycheva

Abstract


Optical schemes of spectrographs based on transmission concave holographic gratings working in converging beams are considered. General description of the design techniques are provided. Each of them is supported by a certain example with calculation and modeling results. In particular, it’s shown that combination of such element with a spherical wedge allows to create a spectrograph with correction of astigmatism and a variable-dispersion spectrograph.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15011]

Full Text: PDF

Citation Details


Cite this article

References


K. H. Nordsieck, A. D. Code, and C. M. Anderson, ”Exploring ultraviolet astronomical polarimetry: results from the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE),” Proc. SPIE 2010, 2–11 (1993).

K. M. Harrison, Grating spectroscopes and how to use them (Springer, Berlin, 2012).

A. V. Savushkin, ”Design of stigmatic gratings for grazing incidence monochromator spectrographs,” Proc. SPIE 2805, 169–174 (1996).

E. Wilkinson, and J. C. Green, ”First-generation holographic, grazing-incidence gratings for use in converging, extremeultraviolet light beams,” Appl. Opt. 34, 4685–4696 (1995).

T. Namioka, ”Theory of the concave grating,” J. Opt. Soc. Am. 49, 446–460 (1959).

N. K. Pavlycheva, and E. R. Muslimov, ”Compact dual-band spectrograph,” Adv. Opt. Technol. 1, 455–461 (2012).

E. R. Muslimov, ”Transmission holographic grating with improved diffraction efficiency for a flat-field spectrograph,” Proc. SPIE 8787, 87870B (2012).

E. Muslimov, Optical schemes of spectrographs with transmission concave holographic gratings (2013 CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing, Changchun, August 4–9, 2013).

H. Noda, T. Namioka, and M. Seya, ”Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).

M. M. Nazmeev, and N. K. Pavlycheva, ”New generation spectrographs,” Opt. Eng. 33, 2777–2782 (1994).

T. Namioka, M. Koike, and D. Content, ”Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261–7274 (1994).

C. Palmer, and E. Loewen, Diffraction grating handbook (sixth edition, Newport Corp., Rochester, 2005).

M. Aikio, Hyperspectral prism-grating-prism imaging spectrograph (PhD thesis, VTT Technical Research Centre of Finland, 2001).

O. Pawluczyk, and R. Pawluczyk, ”Applications of multichannel imaging spectrometer,” Proc. SPIE 5578, 227–238 (2004).

T. Hyvarinen, E. Herrala, and A. Dall’Ava, ”Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 3302–3321 (1998).

J. Choi, T. H. Kim, H. J. Kong, and J. U. Lee, ”Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually,” Appl. Opt. 45, 3430–3441 (2006).