Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

UV distributed Bragg reflectors build from porous silicon multilayers

F. Morales, G. García, A. Luna, R. López, E. Rosendo, T. Diaz, H. Juárez

Abstract


UV Distributed Bragg reflectors were fabricated by a two-step thermal oxidation process over porous silicon multilayers (PS-ML), which were prepared by room-temperature electrochemical anodization of silicon wafers. The optical behavior of the PS-ML before and after oxidation was studied by reflectance measurements. It was observed an UV shift from 430 to 300 nm in the peak of the reflectance spectrum after oxidation of the PS-ML. This was attributed to the presence of silicon oxide over the surface of the silicon filaments. Such oxide also reduced the refractive index of each porous silicon monolayer. The bandgap of the PS-ML was calculated by the Kubelka-Munk approximation, which showed an increase in the bandgap from 3.11 to 4.36 eV after the thermal oxidation process. It was suggested that the observed optical response could opens the possibility of fabrication of UV optoelectronic devices based entirely in the silicon technology.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15016]

Full Text: PDF

Citation Details


Cite this article

References


Z. C. Feng, and R. Tsu, Porous Silicon (World Scientific, Singapore, 1994).

L. Pavesi, R. Guardini, and C. Mazzoleni, ”Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez, ”All-silicon color-sensitive photodetectors in the visible,” Mat. Sci. Eng. C 27, 954 (2007).

L. Z. Yu, and C. R. Wie, ”Fabrication of MSM photoconductor on porous Si using micromachined silicon mask,” Electron. Lett. 28, 911(1992).

A. M. Rossi, and H. G. Bohn, ”Photodetectors from Porous Silicon,” Phys. Status Solidi 202, 1644 (2005).

M. Grau, N. T. Nguyen, A. Straboni, and M. Lemiti, ”Structural and optical propeties of Annealend Porous Silicon Bragg Reflector for Thin-Film Crystalline Silicon Solar Cells,” Eur. Mat. Res. 10, 8 (2011).

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, ”Optical characterization of porous silicon films and multilayer filters,” Appl. Phys. A-Mater. 79, 1919 (2004).

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro, Z. Gaburro, and L. Pavesi, ”Porous silicon-based rugate filters,” Appl. Optics 44, 5415 (2005).

M.-L. Lin, Y.-C. Lin, K.-H. Wu, and C.-P. Huang, ”Preparation of oxidized nano-porous-silicon thin films for ultra-violet optical-sensing applications,” Thin Solid Films 529, 275 (2013).

I. Suemune, N. Noguchi, and M. Yamanishi, ”Photoirradiation Effect on Photoluminescence from anodized Porous silicons and luminesce Mechanism,” Jpn. J. Appl. Phys. 31, L494 (1992).

L. A. Balagurov, S. C. Bayliss, S. Y. Andrushin, A. F. Orlov, B. Unal, D. G. Yarkin, and E. A. Petrova, ”Metal/PS/c-Si photodetectors based on unoxidized and oxidized porous silicon,” Solid State Electron. 45, 1607 (2001).

M. K. Lee, Y. H. Wang, and C. H. Chu, ”Characterization of porous silicon photovoltaic devices through rapid thermal oxidation, rapid thermal annealing and HF-dipping processes,” Sol. Energy Mater. & Sol Cells 59, 59 (1999).

L. Pavesi, ”Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento 20, 1 (1997).

B. Gelloz, A. Kojima, and N. Koshida, ”Stabilization and operation of porous silicon photonic structures from near-ultraviolet to nearinfrared using high-pressure water vapor annealing,” Thin Solid Films 518, 3276 (2010).

V. Torres, R. J. Martín, S. Manotas, F. Agullo, and J. M. Martínez, ”Desarrollo de filtros interferenciales para emisores fotoluminicentes basados en Silicio Poroso,” Bol. Soc. Esp. Ceram. V. 43, 506 (2004).

N. Khosida, A. Kojima, and Y. Nakajima, ”Multifunctional properties of nanocrystalline porous silicon as a quantum-confined material,” Mater. Sci. Eng. C 19, 285 (2002).

D. Brumhead, L. T. Canham, D. M. Seekings, and P. J. Tufton, ”Gravimetric Analysis Of Pore Nucleation And Propagation In Anodised Silicon,” Electrochim. Acta 38, 191(1993).

W. M. Merrill, R. E. Diaz, M. M. Lore, M. C. Squires, and N. G. Alexopoulos, ”Effective Medium Theories for Artificial Materials Composed of Multiple Sizes of Spherical Inclusions in a Host Continuum,” IEEE Conf. Publ. 47, 1(1999).

H. Münder, M. G. Berger, S. Frohnhoff, M. Thonissen, and H. Luth, ”A non-destructive study of the microscopic structure of porous Si,” J. Lumin. 57, 5 (1993).

P. Kumar, P. Lemmens, M. Ghosh, F. Ludwig, and M. Schilling, ”Effect of HF Concentration on Physical and Electronic Properties of Electrochemically Formed Nanoporous Silicon,” J. Nanomater. 2009, 728957 (2009).

V. Dzimbeg-Malcic, Z. Barbaric-Mikocevic, and K. Itric, ”Kubelka- Munk Theory In Describing Optical Properties Of Paper,” TEH VJESN 18, 117 (2011).

M. Krüger, S. Hilbrich, M. Thönissen, D. Scheyen, W. Theiß, and H. Lüth, ”Suppression of ageing effects in porous silicon interference filters,” Opt. Commun. 146, 309 (1998).

J. J. Yon, K. Barla, R. Herino, and G. Bomchil, ”The kinetics and mechanism of oxide layer formation from porous silicon formed on p-Si subtrates,” J. Appl. Phys. 62, 1042 (1987).

S. M. Sze, Semiconductor Devices Physics and Technology (2nd edition, Wiley, New York, 2002).

J. E. Lugo, H. A. Lopez, S. Chan, and P. M. Fauchet, ”Porous silicon multilayer structures: A photonic band gap analysis,” J. Appl. Phys. 91, 4966 (2002).

M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H.Ogata, ”Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds,” J. Appl. Phys. 100, 83520 (2006).

C. Pacholski, ”Photonic Crystal Sensors Based on Porous Silicon,” Sensors. 13, 4694 (2013).

J. Charrier, P. Pirasteh, Y.G. Boucher, and M. Gadonna, ”Bragg reflector formed on oxidised porous silicon,” Phys. Status Solidi C 2, 3227 (2012).

B. Sahaa, M. Sharmaa, A. Sarmaa, A. Rathb, P. V. Satyamb, P. Chakrabortya, and M. K. Sanyal, ”Surface and interfacial structural characterization of MBE grown Si/Ge multilayers,” Appl. Surf. Sci. 256, 547 (2009).

E. D. Palik (ed.), Handbook of optical constants of solids (Academic Press Inc., Washington DC, 1985).

E. V. Astrova, V. B. Voronkov, A. D. Remenyuk, V. B. Shuman, and V. A. Tolmachev, ”Variation of the parameters and composition of thin films of porous silicon as a result of oxidation: ellipsometric studies,” Semiconductors 33, 1149 (1999).

A. Morales, E. Mora, and U. Pal, ”Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. 53, 18 (2007).