Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Absorbance response of graphene oxide coated on tapered multimode optical fiber towards liquid ethanol
Abstract
The investigation of graphene oxide (GO) for sensing applications is attractive due to its nanoscale structure and its sensing properties has yet to be fully understood. In this paper, optical response of GO coated optical fiber sensor towards ethanol is described. GO was coated onto a multimode tapered optical fiber by drop-casting technique. The coated fiber was exposed to 5–40% of ethanol in water. The films were characterized with field emission scanning electron microscope, ultraviolet-visible spectroscopy and Raman spectroscopy. The sensing is based on changes following the absorbance of the GO coated optical fiber upon exposure to ethanol. The developed sensor shows fast response and recovery with duration of 22 and 20 s, respectively. The sensor also displays high repeatability and reversibility.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15019]
Citation Details
Cite this article
References
C. Elosua, I. Matias, C. Bariain, and F. Arregui, â€Volatile organic compound optical fiber sensors: A review,†Sensors 6, 1440–1465 (2006).
http://fscimage.fishersci.com/msds/89308.htm.
Y. Weng, J. Rick, and T. Chou, â€A sputtered thin film of nanostructured Ni/Pt/Ti on Al2O3 substrate for ethanol sensing,†Biosens. Bioelectron. 20, 41–51 (2004).
B. Tao, J. Zhang, S. Hui, and L. Wan, â€An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode,†Sensor Actuat. BChem. 142, 298–303, (2009).
S. Khan, M. Rahman, and K. Akhtar, â€Novel and sensitive ethanol chemi-sensor based on nanohybrid materials,†Int J Electrochem. Sc. 7, 4030–4038 (2012).
B. Lee, â€Review of the present status of optical fiber sensors,†Opt. Fiber Technol. 9, 57–79 (2003).
M. Yasin, S. W. Harun, and H. Arof, Fiber optics sensors (Croatia: InTech, Rijeka, 2012).
H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, â€Tapered optical fiber sensor based on localized surface plasmon resonance.,†Opt. Express 20, 21693–701 (2012).
S. Guo and S. Albin, â€Transmission property and evanescent wave absorption of cladded multimode fiber tapers,†Opt. Express 11, 215–223 (2003).
J. Villatoro, D. Monzón-Hernández, and D. Luna-Moreno, â€Inline optical fiber sensors based on cladded multimode tapered fibers.,†Appl. Opt. 43 5933–5938 (2004).
G. Brambilla, â€Optical fibre nanotaper sensors,†Opt. Fiber Technol. 16, 331–342 (2010).
J. Z. Ou, M. H. Yaacob, J. L. Campbell, M. Breedon, K. Kalantarzadeh, and W. Wlodarski, â€H sensing performance of optical fiber coated with nano-platelet WO3 film,†Sensors Actuat. B-Chem. 166–167, 1–6 (2012).
B. Renganathan, D. Sastikumar, G. Gobi, N. Rajeswari Yogamalar, and A. Chandra Bose, â€Nanocrystalline ZnO coated fib4er optic sensor for ammonia gas detection,†Opt. Laser Technol. 43, 1398–1404 (2011).
S. Manivannan, A. M. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, and K. C. Park, â€Single-walled carbon nanotubes wrapped poly-methyl methacrylate fiber optic sensor for ammonia, ethanol and methanol vapors at room temperature,†Sensors Actuat. BChem. 171–172, 634–638 (2012).
J. Yuan and M. El-Sherif, â€Fiber-optic chemical sensor using polyaniline as modified cladding material,†IEEE Sens. J. 3, 5–12 (2003).
M. Consales, A. Crescitelli, M. Penza, P. Aversa, P. D. Veneri, M. Giordano, and A. Cusano, â€SWCNT nano-composite optical sensors for VOC and gas trace detection,†Sensors Actuat. B-Chem. 138, 351–361, (2009).
Z. . Zhang, R. Lockwood, J. G. . Veinot, and A. Meldrum, â€Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber,†Sensors Actuat. B-Chem. 181, 523–528 (2013).
S. K. Srivastava, R. Verma, and B. D. Gupta, â€Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,†Sensors Actuat. B-Chem. 153, 194–198 (2011).
F. B. Xiong and D. Sisler, â€Determination of low-level water content in ethanol by fiber-optic evanescent absorption sensor,†Opt. Commun. 283, 1326–1330 (2010).
S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, et al., â€Graphene oxide as a practical solution to high sensitivity gas sensing,†J. Phys. Chem. C 117, 10683–10690 (2013).
V. Singh, D. Joung, L. Zhai, and S. Das, â€Graphene based materials: past, present and future,†Prog. Mater. Sci. 56, 1178–1271 (2011).
F. A. Chowdhury, T. Morisaki, J. Otsuki, and M. Sahabul Alam, â€Annealing effect on the optoelectronic properties of graphene oxide thin films,†Appl. Nanosci. 3, 477-483 (2012).
A. Aziz, H. N. Lim, S. H. Girei, M. H. Yaacob, M. A. Mahdi, N. M. Huang, and A. Pandikumar, â€Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium,†Sensors Actuat. B-Chem. 206, 119–125 (2015).
W. H. Jr and R. Offeman, â€Preparation of graphitic oxide,†J. Am. Chem. 208, 1339 (1958).
H. N. Lim, N. M. Huang, S. S. Lim, I. Harrison, and C. H. Chia, â€Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth.,†Int. J. Nanomed. 6, 1817–23, (2011).
S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, â€Theoretical analysis and fabrication of tapered fiber,†Opt. Int. J. Light Electron Opt. 124, 538–543 (2013).
T. Birks and Y. Li, â€The shape of fiber tapers,†Light. Technol. J. 10, 432–438 (1992).
N. F. Lokman, A. A. A. Bakar, F. Suja, H. Abdullah, W. B. W. A. Rahman, N.-M. Huang, and M. H. Yaacob, â€Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions,†Sensors Actuat. B-Chem. 195, 459–466 (2014).
D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, et al., â€Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy,†Carbon N. Y. 47, 145–152 (2009).
L. Nikiel and P. W. Jagodzinski, â€Raman spectroscopic characterization of graphites: A re-evaluation of spectra/ structure correlation,†Carbon N. Y. 31, 1313–1317 (1993).
S. Gurunathan, J. W. Han, V. Eppakayala, and J.-H. Kim, â€Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.,†Colloids Surf. B. Biointerfaces 105, 58– 66 (2013).
Y. Chang, Y. Yao, B. Wang, H. Luo, T. Li, and L. Zhi, â€Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gassensing properties,†J. Mater. Sci. Technol. 29, 157–160 (2013).
V. S. Langford, A. J. Mckinley, and T. I. Quickenden, â€Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,†J. Phys. Chem. A 105, 8916–8921 (2001).
J. I. Paredes, S. Villar-Rodil, a MartÃnez-Alonso, and J. M. D. Tascón, â€Graphene oxide dispersions in organic solvents.,†Langmuir 24, 10560–4 (2008).