Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Simultaneous measurement of magnetic field and temperature based on magnetic fluid-clad long period fiber grating

J. Tang, S. Pu, L. Luo, S. Dong

Abstract


Simultaneous measurement of magnetic field and temperature is proposed and experimentalized with a magnetic fluid-clad long period fibergrating structure. Magnetic fluid is used as the surrounding material of the long period fiber grating. Both of the wavelength and intensityof the spectral resonance valley of the proposed structure can be influenced by the applied magnetic field and ambient temperaturevariation. A two-parameter matrix method is proposed and utilized to measure the magnetic field and temperature simultaneously. Thelinear relationship between the corresponding wavelength shift/intensity variation and magnetic field/temperature change is obtained atcertain ranges of magnetic field and temperature, which is favorable for sensing applications.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15025]

Full Text: PDF

Citation Details


Cite this article

References


N. Bhatia, and J. John, ”Multimode interference devices with single-mode-multimode-multimode fiber structure,” Appl. Opt. 53, 5179–5186 (2014).

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, ”Up-taperbased Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53, 2691–2695 (2014).

P. Zu, C. C. Chan, G. W. Koh, W. S. Lew, Y. Jin, H. F. Liew, W. C. Wong, et al., ”Enhancement of the sensitivity of magnetooptical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sensor. Actuat. BChem. 191, 19–23 (2014).

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, et al., ”Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).

H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, ”Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38, No. 19, 3765–3768 (2013).

R. Zhang, T. Liu, Q. Han, Y. Chen, and L. Li, ”U-bent single-modemultimode- single-mode fiber optic magnetic field sensor based on magnetic fluid,” Appl. Phys. Express 7, 072501 (2014).

J. Tang, S. Pu, S. Dong, and L. Luo, ”Magnetic field sensing based on magnetic-fluid-clad multimode-singlemode-multimode fiber structures,” Sensors 14, 19086–19094 ( 2014).

J. Wu, Y. Miao, W. Lin, B. Song, K. Zhang, H. Zhang, B. Liu, et al., ”Magnetic-field sensor based on core-offset tapered optical fiber and magnetic fluid,” J. Opt. 16, 075705 (2014).

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, ”Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photonics Technol. Lett. 26, 1581– 1584 (2014).

S. Pu, and S. Dong, ”Magnetic field sensing based on magneticfluid- clad fiber-optic structure with up-tapered joints,” IEEE Photonics J. 6, 5300206 (2014).

A. Layeghi, H. Latifi, and O. Frazao, ”Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid,” IEEE Photonics Technol. Lett. 26, 1904–1907 (2014).

Y. Miao, J. Wu, W. Lin, B. Song, H. Zhang, K. Zhang, B. Liu, et al., ”Magnetic field tunability of square tapered no-core fibers based on magnetic fluid,” J. Lightwave Technol. 32, 4600–4605 (2014).

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu and J. Yao, ”Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).

G. Huang, B. Zhou, Z. Chen, H. Jiang, and X. Xing, ”Magnetic-field sensor utilizing the ferrofluid and thin-core fiber modal interferometer,” IEEE Sens. J. 15, 333–336 (2015).

B. Song, Y. Miao, W. Lin, H. Zhang, B. Liu, J. Wu, H. Liu and D. Yan, ”Loss-based magnetic field sensor employing hollow core fiber and magnetic fluid,” IEEE Photonics Technol. Lett. 26, 2283–2286 (2014).

H. Chen, S. Li, J. Li, and Z. Fan, ”Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers,” IEEE Photonics Technol. Lett. (2015), article in press.

R. Gao, Y. Jiang, and G. Li, ”A sandwich structure for the magnetic field detection with supermodes interference,” IEEE Photonics Technol. Lett. 27, 455–458 (2015).

S. Pu, S. Dong, and J. Huang, ”Tunable slow light based on magnetic-fluid infiltrated photonic crystal waveguides,” J. Opt. 16, 045102 (2014).

Z. Zhao, M. Tang, F. Gao, P. Zhang, L. Duan, B. Zhu, S. Fu, et al., ”Temperature compensated magnetic field sensing using dual Sbend structured optical fiber modal interferometer cascaded with fiber Bragg grating,” Opt. Express 22, 27515–27523 (2014).

X. Li, and H. Ding, ”Temperature insensitive magnetic field sensor based on ferrofluid clad microfiber resonator,” IEEE Photonics Technol. Lett. 26, 2426–2429 (2014).

S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, ”Temperature and surrounding refractive index insensitive cascaded long period grating chemical sensor,” Proc. SPIE 9157, 91574J (2014).

R. Gao, Y. Jiang, and L. Jiang, ”Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22, 15697–15709 (2014).

L. Xian, P. Wang, and H. Li, ”Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22, 20260–20267 (2014).

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, ”Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. BChem. 176, 1121–1127 (2013).

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, ”Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sensor. Actuat. B-Chem. 198, 384–387 (2014).

C.-Y. Lin, L. A. Wang, and G.-W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159–1168 (2001).

Y. Zhao, D. Wu, R. Lv, and Y. Ying, ”Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field,” IEEE Trans. Magn. 50, 4600205 (2014).

S. Y. Yang, J. J. Chieh, H. E. Horng, C.-Y. Hong, and H. C. Yang, ”Origin and applications of magnetically tunable refractive index of magnetic fluid films,” Appl. Phys. Lett. 84, 5204–5206 (2004).

C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, ”Control parameters for the tunable refractive index of magnetic fluid films,” J. Appl. Phys. 94, 3849–3852 (2003).

Y. Zhao, D. Wu and R. Q. Lv ”Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid,” IEEE Photonics Technol. Lett. 27, 26–29 (2015).

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu and B. Song, ”Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103, 151101 (2013).

T. G. Liu, Y. F. Chen, Q. Han, and X. Y. Lv ”Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photonics J. 6, 5300307 (2014).