Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates

C. Arregui, J. B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, M. Carrascosa

Abstract


This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15026]

Full Text: PDF

Citation Details


Cite this article

References


A. Ashkin, ”Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).

D. G. Grier, ”A revolution in optical manipulation,” Nature 424, 810–816 (2003).

M. C. Wu, ”Optoelectronic tweezers,” Nat. Photonics 5, 322–324 (2011).

A. Jonás and P. Zemánek, ”Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis. 29, 4813–4851 (2008).

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, ”Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, (1992).

S. Grilli and P. Ferraro, ”Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Apl. Phys. Lett. 92, 232902–232902–3 (2008).

B. I. Sturman and V. M. Fridkin, The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, Philadelphia, 1992).

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, ”Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, ”Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909–241909–3 (2007).

X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, ”Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17, 9981–9988 (2009).

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, ”Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18, 17404–17411 (2010).

C. Arregui, J. B. Ramiro, Ángel Alcázar, Ángel Méndez, H. Burgos, Ángel García-Cabañes, and M. Carrascosa, ”Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22, 29099–29110 (2014).

S. Glaesener, M. Esseling, and C. Denz, ”Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012).

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, et al. ”Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113 191–197 (2013).

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló- López, and M. Carrascosa, ”Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).

M. Esseling, A. Zaltron, C. Sada, and C. Denz, ”Charge sensor and particle trap based on Z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115–061115–4 (2013).

M. Jubera, A. García-Cabañes, J. Olivares, A. Alcazar, and M. Carrascosa, ”Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields,” Opt. Lett. 39 649–652 (2014).

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, ”Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, ”Holographic storage in electrooptic crystals- 2. Beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).

M. Carrascosa and F. Agulló-López, ”Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, ”All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab. Chip. 12, 4449–4454 (2012).

F. Agulló-López, G. Calvo, and M. Carrascosa, ”Fundamentals of Photorefractive Phenomena” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds., 43–82 (Springer, New York, 2006).

H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press Cambridge, New York, 1978).

J. Voldman, ”Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006).

P. Mokr´y, M. Marvan, and J. Fousek, ”Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104–094104–10 (2010).