Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Using dispersion-induced group delay to solve the integer ambiguity problem: a theoretical analysis
Abstract
This paper describes a novel approach for solving the integer ambiguity problem when the adjacent pulse repetition interval length (APRIL) from a femtosecond optical frequency comb (FOFC) is used as a length scale. This approach is inspired by the two-color method, which indicates that there is a one-to-one relationship between the integer part of the APRIL and the group delay distance between the two different wavelengths. Accordingly, we numerically investigate the possibility of using dispersion-induced group delay to solve the integer ambiguity problem. The results of theoretical analyses and numerical investigations demonstrate the feasibility of the proposed method. Our results should contribute toward the further development of APRIL-based length measurement methods.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15035]
Citation Details
Cite this article
References
D. Wei, and M. Aketagawa, â€Comparison of length measurements provided by a femtosecond optical frequency comb,†Opt. Express 22, 7040–7045 (2014).
J. Ye, â€Absolute measurement of a long, arbitrary distance to less than an optical fringe,†Opt. Lett. 29, 1153–1155 (2004).
D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, â€Time-offlight method using multiple pulse train interference as a time recorder,†Opt. Express 19, 4881–4889 (2011).
C. Narin, T. Satoru, T. Kiyoshi, and M. Hirokazu, â€A new method for high-accuracy gauge block measurement using 2 GHz repetition mode of a mode-locked fiber laser,†Meas. Sci. Technol. 23, 054003 (2012).
G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, â€Highaccuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,†Meas. Sci. Technol. 24, 015203 (2013).
H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, â€Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,†Opt. Express 22, 10380–10397 (2014).
D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, â€Analysis of the temporal coherence function of a femtosecond optical frequency comb,†Opt. Express 17, 7011–7018 (2009).
X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, â€Spatial positioning measurements up to 150m using temporal coherence of optical frequency comb,†Precis. Eng. 37, 635–639 (2013).
W. Sudatham, H. Matsumoto, S. Takahashi, and K. Takamasu, â€Verification of the positioning accuracy of industrial coordinate measuring machine using optical-comb pulsed interferometer with a rough metal ball target,†Precis. Eng. 41, 63–67 (2015).
J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, â€Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,†Opt. Express 23, 13069–13081 (2015).
D. Wei, K. Takamasu, and H. Matsumoto, â€Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem: theoretical analysis,†J. Eur. Opt. Soc.-Rapid 8, 13016 (2013).
X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, â€Space position measurement using long-path heterodyne interferometer with optical frequency comb,†Opt. Express 20, 2725–2732 (2012).
K.-N. Joo, Y. Kim, and S.-W. Kim, â€Distance measurements by combined method based on a femtosecond pulse laser,†Opt. Express 16, 19799–19806 (2008).
B. Petr, M. Pavel, K. Petr, and D. Miroslav, â€Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,†Meas. Sci. Technol. 23, 094001 (2012).
P. L. Bender, and J. C. Owens, â€Correction of Optical Distance Measurements for the Fluctuating Atmospheric Index of Refraction,†J. Geophys. Res. 70, 2461–2462 (1965).
G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, â€Extremely high-accuracy correction of air refractive index using twocolour optical frequency combs,†Sci. Rep. 3, (2013).
D. Wei, and M. Aketagawa, â€Comparison of two-color methods based on wavelength and adjacent pulse repetition interval length,†J. Eur. Opt. Soc.-Rapid 9, 14031 (2014).
D. Wei, M. Aketagawa, K. Takamasu, and H. Matsumoto, â€Twocolor absolute length measuring method based on pulse repetition interval lengths,†Opt. Eng. 53, 122413 (2014).
W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, â€Interferometric Measurements of Femtosecond Group Delay in Optical- Components,†Opt. Lett. 13, 574–576 (1988).
S. Diddams, and J.-C. Diels, â€Dispersion measurements with whitelight interferometry,†J. Opt. Soc. Am. B 13, 1120–1129 (1996).
D. Wei, K. Takamasu, and H. Matsumoto, â€A study of the possibility of using an adjacent pulse repetition interval length as a scale using a Heliumâ˘A ¸SNeon interferometer,†Precis. Eng. 37, 694–698 (2013).
J. Ye, and S. T. Cundiff, Femtosecond optical frequency comb : principle, operation, and applications (Springer, New York, 2005).
B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics, Wiley series in pure and applied optics (Wiley-Interscience, Hoboken, 2007).
J. A. Stone, and J. H. Zimmerman, â€Refractive index of air calculator,†http://emtoolbox.nist.gov/Wavelength/Edlen.asp.
D. Wei, and M. Aketagawa, â€Uncertainty in length conversion due to change of sensitivity coefficients of refractive index,†Opt. Commun. 345, 67–70 (2015).
P. Balling, P. Kren, P. Masika, and S. A. van den Berg, â€Femtosecond frequency comb based distance measurement in air,†Opt. Express 17, 9300–9313 (2009).
K. G. Larkin, â€Efficient nonlinear algorithm for envelope detection in white light interferometry,†J. Opt. Soc. Am. A 13, 832–843 (1996).
M. C. Park, and S. W. Kim, â€Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,†Opt. Eng. 39, 952–959 (2000).