Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Refractive index sensing setup based on a taper and an intrinsic micro Fabry-Perot interferometer
Abstract
In this work, a refractive index sensor setup based on a biconically tapered fiber (BTF) concatenated to an intrinsic all-fiber micro Fabry-Perot interferometer (MFPI) is presented. Here, the power of the MFPI spectral fringes decreases as the refractive index interacts with theevanescent field of the BTF segment. Furthermore, it is demonstrated that the RI sensitivity can be enhanced by bending the BTF segment.Finally, it is shown that by using this sensing arrangement, at ~1.53 µm wavelength, it is possible to detect refractive index changeswithin the measurement range of 1.3 to 1.7 RIU, with a sensitivity of 39.92 dB/RIU and a RI resolution of 2.5 x 10􀀀^-3 RIU with a curvature of C = 18.02 m^-􀀀1.
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15039]
Citation Details
Cite this article
References
A. Leung, P. M. Shankar, and R. Mutharasan, â€A review of fiberoptic biosensors,†Sensor Actuat. B-Chem. 125, 688–703 (2007).
M. Mehrvar, C. Bis, J. M. Scharer, M. M. Young, and J. H. Luong, â€Fiber-optic biosensors-trends and advances,†Anal. Sci. 16, 677–692 (2000).
M. Marazuela, and M. Moreno-Bondi, â€Fiber-optic biosensors – an overview,†Anal. Bioanal Chem. 372, 664–682 (2002).
T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, â€Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,†Opt. Express 22, 22802–22807 (2014).
M. Born, and E. Wolf, Principles of optics (Great Britain: Pergamon Press, Oxford, 1970).
A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, â€Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,†Appl. Phys. Lett. 98, 221109 (2011).
W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, â€Highly sensitive fiber Bragg grating refractive index sensors,†Appl. Phys. Lett. 86, 151122 (2005).
P. A. S. Jorge, S. O. Silva, C. Gouveia, P. Tafulo, L. Coelho, P. Caldas, D. Viegas, et al., â€Fiber optic-based refractive index sensing at INESC Porto,†Sensors 12, 8371–8389 (2012).
A. Lim, W. B. Ji, and S. C. Tjin, â€Improved refractive index sensitivity utilizing long-period gratings with periodic corrugations on cladding,†J. Sensor 2012, 48347 (2012).
R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, â€Single S-tapered fiber Mach-Zehnder interferometers,†Opt. Lett. 36, 4482–4484 (2011).
L.-P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B.-O. Guan, â€Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,†Opt. Express 21, 26714–26720 (2013).
L. Xu, Y. Li, and B. Li, â€Nonadiabatic fiber taper-based Mach- Zehnder interferometer for refractive index sensing,†Appl. Phys. Lett. 101, 153510 (2012).
O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, â€Fabry-Perot refractometer based on an end-of-fiber polymer tip,†Opt. Lett. 34, 2474–2476 (2009).
O. Frazão, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, â€Refractive index tip sensor based on Fabry-Perot cavities formed by a suspended core fibre,†J. Eur. Opt. Soc.- Rapid 4, 09041 (2009).
M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao, L.-C. Xu, and M. Han, â€Refractive index measurement using photonic crystal fiber-based Fabry- Perot interferometer,†Appl. Opt. 49, 1593–1598 (2010).
D. Jauregui-Vazquez, J. M. Estudillo-Ayala, R. Rojas-Laguna, E. Vargas-Rodriguez, J. M. Sierra-Hernandez, J. C. Hernandez- Garcia, and R. I. Mata-Chavez, â€An all fiber intrinsic Fabry-Perot interferometer based on an air-microcavity,†Sensors 13, 6355–6364 (2013).
E. Baude, â€Numerical study of tapered fiber optics as evanescent field sensors,†in Proceedings to 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 1–5 (IEEE, Rio de Janeiro, 2013).
A. Hartung, F. Wirth, and H. Bartelt, â€Light propagation in tapered optical fibers: Spatial light confinement and generation of plasmonic waves,â€, in Proceedings to Progress in Electromagnetics Research Symposium, 255–258 (The Electromagnetics Academy, Marrakesh, 2011).
L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, â€Bending effects in biconically tapered single-mode fibers,†J. Lightwave Technol. 8, 1084–1090 (1990).
D. Marcuse, â€Curvature loss formula for optical fibers,†J. Opt. Soc. Am. 66, 216–220 (1976).
T. Zhu, D. Wu, M. Liu, and D.-W. Duan, â€In-line fiber optic interferometric sensors in single-mode fibers,†Sensors 12, 10430–10449 (2012).
P. Chambers, E. A. D. Austin, and J. P. Dakin, â€Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,†Mea. Sci. Technol. 15, 1629 (2004).
R. Goody, â€Cross-correlating spectrometer,†J. Opt. Soc. Am. B 58, 900–908 (1968).
E. Vargas-Rodriguez, and H. N. Rutt, â€Method to minimize spurious background signals in gas detectors based on correlation spectroscopy using a Fabry-Perot bandpass filter shape optimization,†Opt. Eng. 44, 103002 (2005).
E. Vargas-RodrÃguez, and H. N. Rutt, â€An analytical method to find the optimal parameters for gas detectors based on correlation spectroscopy using a Fabry-Perot interferometer,†Appl. Optics 46, 4625–4632 (2007).