Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Performance and flow dynamics studies of polymeric optofluidic SERS sensors

S. Uusitalo, J. Hiltunen, P. Karioja, S. Siitonen, V. Kontturi, R. Myllylä, M. Kinnunen, I. Meglinski

Abstract


We present a polymer-based optofluidic surface enhanced Raman scattering chip for biomolecule detection, serving as a disposable sensor choice with cost-effective production. The SERS substrate is fabricated by using industrial roll-to-roll UV-nanoimprinting equipment and integrated with adhesive-based polymeric microfluidics. The functioning of the SERS detection on-chip is confirmed and the effect of the polymer lid on the obtainable Raman spectra is analysed. Rhodamine 6G is used as a model analyte to demonstrate continuous flow measurements on a planar SERS substrate in a microchannel. The relation between the temporal response of the sensors and sample flow dynamics is studied with varied flow velocities, using SERS and fluorescence detection. The response time of the surface-dependent SERS signal is longer than the response time of the fluorescence signal of the bulk flow. This observation revealed the effect of convection on the temporal SERS responses at 25 µl/min to 1000 µl/min flow velocities. The diffusion of analyte molecules from the bulk concentration into the sensing surface induces about a 40-second lag time in the SERS detection. This lag time, and its rising trend with slower flow velocities, has to be taken into account in future trials of the optofluidic SERS sensor, with active analyte binding on the sensing surface.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15043]

Full Text: PDF

Citation Details


Cite this article

References


A. Liu, H. Huang, L. Chin, Y. Yu, and X. Li, ”Label-free detection with micro optical fluidic systems (MOFS): a review,” Anal. Bioanal. Chem. 391 , 2443–2452 (2008).

H. K. Hunt, and A. M. Armani, ”Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).

M. Nirschl, F. Reuter, and J. Vörös, ”Review of transducer principles for label-free biomolecular interaction analysis,” Biosensors 1 , 70–92 (2011).

S. Z. Oo, R. Chen, S. Siitonen, V. Kontturi, D. Eustace, J. Tuominen, S. Aikio, and M. Charlton, ”Disposable plasmonic plastic SERS sensor,” Opt. Express 21 , 18484–18491 (2013).

X. Fan, and I. M. White, ”Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, ”Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).

A. M. Michaels, M. Nirmal, and L. Brus, ”Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121 , 9932–9939 (1999).

S. Nie, and S. R. Emory, ”Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275, 1102–1106 (1997).

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, ”Silver nanoparticles on porous silicon: approaching single molecule detection in resonant SERS regime,” J. Phys. Chem. C 117, 20139–20145 (2013).

G. C. Schatz, M. A. Young, and R. P. Van Duyne, ”Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–45 (2006).

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtulus, S. H. Lee, N. C. Lindquist, S. Oh, et al., ”Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).

C. L. Haynes, and R. P. Van Duyne, ”Plasmon-Sampled SurfaceEnhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003).

T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, ”Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons,” Appl. Spectrosc. 54, 371–377 (2009).

L. A. Dick, A. J. Haes, and R. P. Van Duyne, ”Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes,” J. Phys. Chem. B 104, 11752–11762 (2000).

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, ”Surface-enhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces,” J. Phys. Chem. B 105, 6907–6915 (2001).

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, ”Metal film over nanosphere (MFON) electrodes for surfaceenhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” J. Phys. Chem. B 106, 853–860 (2002).

I. M. White, S. H. Yazdi, and W. Y. Wei, ”Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis,” Microfluid. Nanofluid. 13, 205–216 (2012).

G. L. Liu, and L. P. Lee, ”Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87, 074101 (2005).

A. Lamberti, A. Virga, A. Angelini, A. Ricci, E. Descrovi, M. Cocuzza, and F. Giorgis, ”Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration,” RSC Advances 5, 4404–4410 (2015).

J. Teng, J. Chu, C. Liu, T. Xu, Y. Lien, J. Cheng, S. Huang, et al., ”Fluid Dynamics in Microchannels,” in Fluid Dynamics, Computational Modeling and Applications L.H. Juarez, ed., 403–436 (InTech, Rijeka, 2012).

M. Zimmermann, E. Delamarche, M. Wolf, and P. Hunziker, ”Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays,” Biomed. Microdevices 7, 99–110 (2005).

N. Orgovan, D. Patko, C. Hos, S. Kurunczi, B. Szabo, J. J. Ramsden, and R. Horvath, ”Sample handling in surface sensitive chemical and biological sensing: A practical review of basic fluidics and analyte transport,” Adv. Colloid Interfac. 211 , 1–16 (2014).

J. Koplik, J. R. Banavar, and J. F. Willemsen, ”Molecular dynamics of fluid flow at solid surfaces,” Phys. Fluids A - Fluid. 1 , 781–794 (1989).

J. Lauri, M. Wang, M. Kinnunen, and R. Myllylä, ”Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” in Biomed. Optics 2008 68630F– 68630F-8 (2008).

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, ”Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).

M. L. Yarmush, D. B. Patankar, and D. M. Yarmush, ”An analysis of transport resistances in the operation of BIAcoreâDˇ c; implications´ for kinetic studies of biospecific interactions,” Mol. Immunol. 33, 1203–1214 (1996).

M. Stenberg, and H. Nygren, ”Kinetics of antigen-antibody reactions at solid-liquid interfaces,” J. Immunol. Methods 113, 3–15 (1988).

T. E. Starr, and N. L. Thompson, ”Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).

T. Gervais, and K. F. Jensen, ”Mass transport and surface reactions in microfluidic systems,” Chem. Eng. Sci., 61 , 1102–1121 (2006).

A. Lionello, J. Josserand, H. Jensen, and H. H. Girault, ”Dynamic protein adsorption in microchannels by ”stop-flow” and continuous flow,” Lab Chip 5, 1096–1103 (2005).

G. Hu, Y. Gao, and D. Li, ”Modeling micropatterned antigenantibody binding kinetics in a microfluidic chip,” Biosens. Bioelectron. 22, 1403–1409 (2007).

D. G. Myszka, T. A. Morton, M. L. Doyle, and I. M. Chaiken, ”Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor,” Biophys. Chem. 64, 127–137 (1997).

K. Lebedev, S. Mafe, and P. Stroeve, ”Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel,” J. Colloid Interface Sci. 296, 527–537 (2006).

R. Karlsson, A. Michaelsson, and L. Mattsson, ”Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145, 229–240 (1991).

R. W. Glaser, ”Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 152–161 (1993).

L. L. Christensen, ”Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation,” Anal. Biochem. 249, 153–164 (1997).

R. W. Glaser, ”Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 152–161 (1993).

P. M. Richalet-Secordel, N. Rauffer-Bruyere, L. L. Christensen, B. Ofenloch-Haehnle, C. Seidel, and M. H. Van Regenmortel, ”Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation,” Anal. Biochem. 249, 165–173 (1997).

L. Lee, ”Adsorption: the solid-fluid interface,” in Molecular Thermodynamics of Nonideal Fluids H. Brenner, ed., 424–462 (Butterworth-Heinemann, Boston, 1988).

D. Murzin, ”Physisorption and chemisorption,” in Engineering Catalysis, 16 (De Gruyter, Berlin, 2013).

W. Hüttner, K. Christou, A. Göhmann, V. Beushausen, and H. Wackerbarth, ”Implementation of substrates for surfaceenhanced Raman spectroscopy for continuous analysis in an optofluidic device,” Microfluid. Nanofluid. 12, 521–527 (2012).

R. Liedert, L. K. Amundsen, A. Hokkanen, M. Mäki, A. Aittakorpi, M. Pakanen, J. R. Scherer, et al., ”Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria,” Lab Chip 12, 333–339 (2012).