Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Modification of optical properties of seawater exposed to oil contaminants based on excitation-emission spectra

E. Baszanowska, Z. Otremba

Abstract


The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra.

Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

 


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15047]

Full Text: PDF

Citation Details


Cite this article

References


Z. A. Otremba, ”Modelling of the light transfer in a water column polluted with oil suspension,” J. Eur. Opt. Soc.-Rapid 8, 13067 (2013).

U. Frank, ”A review of fluorescence spectroscopic method for oil spill source identification,” Toxilogical and Env. Chem. Reviews 2, 163–185 (1978).

C. D. Geddes, and J. R. Lakowicz, Review in fluorescence 2005 (Springer, Heidelberg/Berlin, 2005).

G. G. Guilbault, Practical fluorescence (CRC Press, Boca Raton, 1990).

M. Fingas, The Basics of Oil Spill Cleanup (CRC Press, Boca Raton, 2013).

M. Fingas, and C. Brown, ”Review of oil spill remote sensors,” in Proceedings to Seventh International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan (ERIM), Miami, 2002).

T. A. Dolenko, V. V. Fadeev, I. V. Gerdova, S. A. Dolenko, and R. Reuter, ”Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks,” Appl. Optics 41 (24), 5155–5166 (2002).

J. B. F. Lloyd, ”Synchronized excitation of fluorescence emission spectra,” Nature Phys. Sci. 231 , 64–65 (1971).

D. Patra, and A. K. Mishra, ”Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 373 (4)-(5), 304–309 (2002).

L. Poryvkina, S. Babichenko, and O. Davydova, ”SFS characterisation of oil pollution in natural water,” in Proceedings to Fifth International Conference on Remote Sensing for Marine and Coastal Environments, 520–524 (Michigan Tech Research Institute, San Diego, 1998).

E. Baszanowska, and Z. Otremba, ”Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment,” J. Eur. Opt. Soc.-Rapid 9, 14029 (2014).

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, ”Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc.-Rapid 8, 13069 (2013).

A. Stelmaszewski, ”Fluorescence method for determination of oil identity,” Opt. Appl. 304 (3), 405–418 (2004).

D. Patra, and A. K. Mishra, ”Recent developments in multicomponent synchronous fluorescence scan analysis,” Trend. Anal. Chem. 21 (12), 787–798 (2002).

M. Shaver, and L. B. McGown, ”Fluorescence Studies of Complex Coal Liquid Samples Using the Lifetime Synchronous Spectrum (LiSS),” Appl. Spectrosc. 49 (6), 813–818 (1995).

Paula G. Coble, ”Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51 (4), 325–346 (1996).

P. G. Coble, ”Marine Optical Biogeochemistry: The Chemistry of Ocean Color,” Chem. Rev. 107 (2), 402–418 (2007).

P. G. Coble, ”Colored dissolved organic matter in seawater,” in Subsea Optics and Imaging, J. Watson, and O. Zielinski, eds., (1st Edition, Woodhead Publishing, Cambridge, 2013).

V. Drozdowska, W. Freda, E. Baszanowska, K. Rudz, M. Darecki, J. Heldt, and H. Toczek, ”Spectral properties of natural and oil polluted Baltic seawater - results of measurements and modelling,” Eur. Phys. J.-Spec. Top. 222, 2157–2170 (2013).

P. Kowalczuk, J. Ston-Egiert, W. J. Cooper, R. F. Whitehead, and M, J. Durako, ”Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96 (3), 273–292 (2005).

J. H. Christensen, A. B. Hansen, J. Mortensen, and O. Andersen, ”Characterization and Matching of Oil Samples Using Fluorescence Spectroscopy and Parallel Factor Analysis,” Anal. Chem. 77 (7), 2210–2217 (2005).

E. Baszanowska, Z. Otremba, H. Toczek, and P. Rohde, ”Fluorescence spectra of oil after it contacts with aquatic environment,” Journal of KONES Powertrain and Transport 20 (3), 29–34 (2013).

Z. Otremba, E. Baszanowska, H. Toczek, P. Rohde., Spectrofluorometry applied to oil-in-water emulsion characterization, Journal of KONES Powertrain and Transport 18 (3), 317–321 (2011).

M. Ostrowska, ”Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea,” Oceanologia 54 (4), 545–564 (2012).

K. Rudz, H. Toczek, and M. Darecki, ”Modelling the influence of oil content on optical properties of sea water in the Baltic Sea,” J. Europ. Opt. Soc. Rap. Public. 8, 13063 (2013).

W. Freda, ”Comparison of the spectral-angular properties of light scattered in the Baltic Sea and oil emulsions,” J. Eur. Opt. Soc.- Rapid 9, 14017 (2014).

S. P. Garaba, T. H. Badewien, A. Braun, A.-C. Schulz, and O. Zielinski, ”Using ocean colour remote sensing products to estimate turbidity at the Spiekeroog Wadden Sea time series station,” J. Eur. Opt. Soc.-Rapid 9, 14020 (2014).

Horiba Scientific, Operation manual (2011).

J. Para, P. G. Coble, B. Charriere, M. Tedetti, C. Fontana, and R. Sempere, ”Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the north-western Mediterranean Sea,” Biogeosciences 7, 4083–4103 (2010).