Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Deterministic measurement and correction of the pad shape in full-aperture polishing processes
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15049]
Citation Details
Cite this article
References
J. K. Lawson, J. M. Auerbach, R. E. English, M. A. Henesian, J. T. Hunt, R. A. Sacks, J. B. Trenholme, et al., â€NIF Optical Specifications - The Importance of the RMS Gradient,†Proc. SPIE 3492, 336 (1998).
H. Y. Tam, and H. B. Cheng, â€An investigation of the effects of the tool path on the removal of material in polishing,†J. Mater. Process. Tech. 210(5), 807–818 (2010).
J. M. Tamkin, and T. D. Milster, â€Effects of structured mid-spatial frequency surface errors on image performance,†Appl. Optics 49(33), 6522–6536 (2010).
D. Liao, Z. Yuan, C. Tang, R. Xie, and X. Chen, â€Mid-Spatial Frequency Error (PSD-2) of optics induced during CCOS and fullaperture polishing,†J. Eur. Opt. Soc.-Rapid 8, 13031 (2013).
T. I. Suratwala, M. D. Feit, and W. A. Steele, â€Material removal and surface figure during pad polishing of fused silica,†J. Am. Ceram. Soc. 93(5), 1326–1340 (2010).
F. Cooke, N. Brown, and E. Prochnow, â€Annular lapping of precision optical flatware,†Opt. Eng. 15(5), 155407–155407 (1976).
D. W. Kim, S. W. Kim, and J. H. Burge, â€Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,†Opt. Express 17(24), 21850–21866 (2009).
C. Fan, J. Zhao, L. Zhang, Y. S. Wong, G. S. Hong, and W. S. Zhou, â€Modeling and analysis of the material removal profile for free abrasive polishing with sub-aperture pad,†J. Mater. Process. Tech. 214(2), 285–294 (2014).
J. C. Lambropoulos, C. Miao, and S. D. Jacobs, â€Magnetic Field Effects on Shear and Normal Stresses in Magnetorheological Finishing,†Opt. Express 18(19), 19713–19723 (2010).
J. Arkwright, J. Burke, and M. Gross, â€A deterministic optical figure correction technique that preserves precision-polished surface quality,†Opt. Express 16(18), 13901–13907 (2008).
T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, â€Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,†J. Mater. Process. Tech. 213(9), 1532– 1537 (2013).
Z. Z. Wang, R. Pan, Y. B. Guo, D. X. Zhang, Y. H. Xie, and J. Wang, â€Controllability of stiffness of bonnet tool polishing larges aspheric lenses,†High power laser and particle beams 25(9), 2270–2274 (2013).
K. Park, J. Park, B. Park, and H. Jeong, â€Correlation between breakin characteristics and pad surface conditions in silicon wafer polishing,†J. Mater. Process. Tech. 205(1)-(3), 360–365 (2008).
D. Liao, J. Wang, S. Zhao, R. Xie, X. Chen, Z. Yuan, B. Zhong, X. Xu, and S. Zhang, â€Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,†J. Non-Cryst. Solids 391, 96–100 (2014).
F. W. Preston, â€The theory and design of plate glass polishing machines,†J. Soc. Glass Tech. 11, 214–256 (1927).
D. Liao, R. Xie, J. Hou, X. Chen, and B. Zhong, â€A polishing process for nonlinear optical crystal flats based on an annular polyurethane pad,†Appl. Surf. Sci. 258(22), 8552–8557 (2012).
S. R. Runnels, I. Kim, J. Schleuter, C. Karlsrud, and M. Desai, â€Modelling tool for chemical- mechanical polishing design and evaluation,†IEEE T. Semiconduct. M. 11(3), 501–510 (1998).
Y. B. Xin, â€Modeling of pad-wafer contact pressure distribution in chemical-mechanical polishing,†Int. J. Mfg. Sci. Technol. 2(1), 20–33 (2000).
G. Fu, and A. Chandra, â€A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelastic pad deformation,†J. Electron. Mater. 31(10), 1066–1073 (2002).
O. Chang, H. Kim, K. Park, B. Park, H. Seo, and H. Jeong, â€Mathematical modeling of CMP conditioning process,†Microelectron. Eng. 84(4), 577–583 (2007).
Y. Y. Zhou, and E. C. Davis, â€Variation of polish pad shape during pad dressing,†Mater. Sci. Eng. B 68(2), 91–98 (1999).
Y. G. Wang, Y. W. Zhao, and J. Gu, â€A new nonlinear-microcontact model for single particle in the chemical–mechanical polishing with soft pad,†J. Mater. Process. Tech. 183(2)-(3), 374–379 (2007).
D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, â€Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,†Ceram. Int. 40(3), 4479–4483 (2014).
M. Y. Tsai, and Y. S. Liao, â€Dressing characteristics of oriented single diamond on CMP polyurethane pad,†Mach. Sci. Technol. 13(1), 92–105 (2009).
D. W. Kim, and S. W. Kim, â€Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes,†Opt. Express 13(3), 910–917 (2005).
L. Zhou, Y. Dai, X. Xie, and S. Li, â€A Novel Path Used in Computercontrolled Polishing Process Based on Uniform-area-increment Spiral,†Journal of National University of Defense Technology 31(4), 1–4 (2009).
C. Song, Y. Dai, and X. Peng, â€Model and algorithm based on accurate realization of dwell time in magnetorheological finishing,†Appl. Optics 49(19), 3676–3683 (2010).
H. Y. Tam, O. C. Lui, and C. K. Mok, â€Robotic polishing of free-form surfaces using scanning paths,†J. Mater. Process. Tech. 95(1)-(3), 191–200 (1999).
C. Wang, W. Yang, Z. Wang, X. Yang, C. Hu, B. Zhong, Y. Guo and Q. Xu, â€Dwell-time algorithm for polishing large optics,†Appl. Optics 53(21), 4752–4760 (2014).
D. F. Liao, H. Zhao, Z. G. Yuan, and R. Q. Xie, â€Improvement of Surface Figure in the Polyurethane Pad Continuous Polishing Process,†Appl. Mech. Mater. 319, 107–112 (2013).
T. Suratwala, R. Steele, M. Feit, R. Desjardin, and D. Mason, â€Convergent Pad Polishing of Amorphous Silica,†International Journal of Applied Glass Science 3(1), 14–28 (2012).