Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Microscopy assisted fabrication of a hydrogel-based microfluidic filter
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15058]
Citation Details
Cite this article
References
D. Erickson, and D. Li, â€Integrated microfluidic devices,†Anal. Chim. Acta 507, 11–26 (2004).
K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, â€Microchip-based chemical and biochemical analysis systems,†Adv. Drug Deliver. Rev. 55, 379–391 (2003).
P. N. Floriano, N. Christodoulides, D. Romanovicz, B. Bernard, G. W. Simmons, M. Cavell, and J. T. McDevitt, â€Membrane-based on-line optical analysis system for rapid detection of bacteria and spores,†Biosens. Bioelectron. 20, 2079–2088 (2005).
H. Mohamed, A. P. Russo, D. H. Szarowski, E. McDonnell, L. A. Lepak, M. G. Spencer, D. L. Martin, et al., â€Development and characterization of on-chip biopolymer membranes,†J. Chromatogr. A 1111, 214–219 (2006).
J. P. Brody, T. D. Osborn, F. K. Forster, and P. Yager, â€A planar microfabricated fluid filter,†Sensor Actuator. A-Phys. 54, 704–708 (1996).
B. He, L. Tan, and F. Regnier, â€Microfabricated filters for microfluidic analytical systems,†Anal. Chem. 71, 1464–1468 (1999).
G. L. Lettieri, A. Dodge, G. Boer, N. F. de Rooij, and E. Verpoorte, â€A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows,†Lab Chip 3, 34–39 (2003).
F. Svec, E. C. Peters, D. Sykora, C. Yu, and J. M. J. Frechet, â€Monolithic stationary phases for capillary electrochromatography based on synthetic polymers: designs and applications,†J. High Res. Chromatogr. 23, 3–18 (2000).
R. W. Tjerkstra, J. G. E. Gardeniers, J. J. Kelly, and A. Van den Berg, â€Multi-Walled Microchannels: Free-Standing Porous Silicon Membranes for Use in µTAS,†J. Microelectromech. S. 9, 495–501 (2000).
J. Khandurina, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, â€Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis,†Anal. Chem. 71, 1815–1819 (1999).
S.-Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M. L. Shuler, and M. Wu, â€A hydrogel-based microfluidic device for the studies of directed cell migration,†Roy. Soc. Ch. 7, 763–769 (2007).
S. Klatt, M. Allerdißen, R. Körbitz, B. Voit, K.-F. Arndt, and A. Richter, â€Hydrogel-based microfluidic systems,†Adv. Sci. Tech. 81, 90–95 (2013).
D. Psaltis, S. R. Quake, and C. Yang, â€Developing optofluidic technology through the fusion of microfluidics and optics,†Nature 442, 381–386 (2006).
G. C. Randall, and P. S. Doyle, â€Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices,†P. Natl. Acad. Sci. USA 102, 10813–10818 (2005).
D. Bartolo, G. Degré , P. Nghe, and V. Studer, â€Microfluidic Stickers,†Lab Chip 8, 274–279 (2008).
J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, â€Fabrication of microfluidic systems in poly (dimethylsiloxane),†Electrophoresis 21, 27–40 (2000).
J. S. Paustian, R. N. Azevedo, S.-T. B. Lundin, M. J. Gilkey, and T. M. Squires, â€Microfluidic Microdialysis: Spatiotemporal Control over Solution Microenvironments Using Integrated Hydrogel Membrane Microwindows,†Phys. Rev. X 3, 041010 (2013).