Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Optical path difference evaluation of laser-soldered optical components

T. Burkhardt, M. Hornaff, D. Burkhardt, E. Beckert

Abstract


We present Solderjet Bumping, a laser-based soldering process, as an all inorganic joining technique for optical materials and mechanical support structures. The adhesive-free bonding process enables the low-stress assembly of fragile and sensitive components for advanced optical systems. Our process addresses high demanding applications, e.g. under high energetic radiation (short wavelengths of 280 nm and below and/or high intensities), for vacuum operation, and for harsh environmental conditions. Laser-based soldering allows the low stress assembly of aligned sub-cells as key components for high quality optical systems. The evaluation of the optical path difference in fused silica and the radiation resistant LAK9G15 glass components after soldering and environmental testing shows the potential of the technique.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15059]

Full Text: PDF

Citation Details


Cite this article

References


T. Sure, J. Heil, and J. Wesner, ”Microscope objective production: on the way from the micrometer scale to the nanometer scale,” Proc. SPIE 5180, 283–292 (2004).

J. Heil, T. Bauer, W. Mueller, T. Sure, and J. Wesner, ”New tools for high-precision positioning of optical elements in high-NA microscope objectives,” Proc. SPIE 5252, 431–442 (2004).

E. Grossman, and I. Gouzman, ”Space environment effects on polymers in low earth orbit,” Nucl. Instrum. Meth. B 208, 48–57 (2003).

L. Reichmann, O. Falkenstörfer, U. Krüger, T. Schletterer, M. Bening, and M. Bornschein, ”Low-stress glue-free mounting technology for optical elements,” Proc. SPIE 7100, 71001B-1–71001B-7 (2008).

H. Holderer, and J. Christ, ”UV-resistant jointing technique for lenses and mounts,” US Patent 5991101 (1999).

U. Bingel, H. Holderer, and F. Zernike, ”Galvanoplastic optical mount,” EP Patent 0898189 (2005).

T. Takahashi, T. Okumura, E. Suzuki, T. Kojima, H. Suzuki, T. Tojo, and K. Machida, ”Lens-cementing technology used in optical systems of deep-ultraviolet wavelength regions,” J. Micro-Nanolith. MEM 6, 043010 (2007).

C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, and A. Tünnermann, ”BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092–1103 (2014).

S. Sinha, K. E. Urbanek, A. Krzywicki, and R. L. Byer, ”Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Express 15, 13003–13022 (2007).

T. Tamaki, W.Watanabe, and K. Itoh, ”Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10460–10468 (2006).

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, ”Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A-Mater. 103, 257–261 (2011).

K. Egashira, and M. Kobayashi, ”Analysis of thermal conditions in CO2 laser splicing of optical fibers,” Appl. Optics 16, 2743–2746 (1977).

K. Egashira, and M. Kobayashi, ”Optical fiber splicing with a lowpower CO2 laser,” Appl. Optics 16, 1636–1638 (1977).

M. Zervas, and C. Codemard, ”High power fiber lasers: a review,” IEEE J. Quantum Elect. 20, 219–241 (2014).

H. Faidel, B. Gronloh, M. Winzen, E. Liermann, D. Esser, V. Morasch, J. Luttmann, et al., ”Passive alignment and soldering technique for optical components,” Proc. SPIE 8235, 8235–8240 (2012).

L. Stauffer, A. Würsch, B. Gächter, K. Siercks, I. Verettas, S. Rossopoulos, and R. Clavel, ”A surface-mounted device assembly technique for small optics based on laser reflow soldering,” Opt. Laser. Eng. 43, 365–372 (2005).

H. Banse, E. Beckert, R. Eberhardt, W. Stöckl, and J. Vogel, ”Laser beam soldering– a new assembly technology for micro optical systems,” Microsyst. Technol. 11, 186–193 (2005).

E. Beckert, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, C. Stiehl, R. Eberhardt, et al., ”Submicron accuracy optimization for laser beam soldering processes,” Proc. SPIE 7585, 758505 (2010).

J. Ojeda, E. Beckert, T. Burkhardt, M. Hornaff, and A. Kamm, ”Experimental evaluation of the polarization crosstalk when soldering a polarization-maintaining fiber into a v-grooved substrate,” IEEE T. Compon. Pack T. 3, 543–548 (2013).

P. Ribes, T. Burkhardt, M. Hornaff, S. Kousar, D. Burkhardt, E. Beckert, M. Gilaberte, et al., ”Solderjet bumping technique used to manufacture a compact and robust green solid-state laser,” Proc. SPIE 9520, 95200 (2015).

T. Burkhardt, M. Hornaff, A. Kamm, D. Burkhardt, E. Schmidt, E. Beckert, R. Eberhardt, et al., ”Low-strain laser-based solder joining of mounted lenses,” Proc. SPIE 9574, 95740M (2015).

K. Kim, S. Huh, and K. Suganuma, ”Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys,” Mat. Sci. Eng. A-Struct 333, 106–114 (2002).

P. Lall, S. Shantaram, J. Suhling, and D. Locker, ”Effect of high strain-rate on mechanical properties of SAC105 and SAC305 leadfree alloys,” in Proceedings to the 62nd Electronic Components and Technology Conference (ECTC), 1312–1326 (IEEE, San Diego, 2012).

B. W. Smith, ”Optical projection lithography,” in Nanolithography: the art of fabricating nanoelectronic and nanophotonic devices and systems, M. Feldman, ed., 1–41 (Woodhead Publishing, Cambridge, 2014).