Journal of the European Optical Society - Rapid publications, Vol 11 (2016)

Cover Image

Statistical classification of soft solder alloys by laser-induced breakdown spectroscopy: review of methods

R. Zdunek, M. Nowak, E. Pliński

Abstract


This paper reviews machine-learning methods that are nowadays the most frequently used for the supervised classification of spectral signals in laser-induced breakdown spectroscopy (LIBS). We analyze and compare various statistical classification methods, such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least-squares discriminant analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), support vector machine (SVM), naive Bayes method, probabilistic neural networks (PNN), and K-nearest neighbor (KNN) method. The theoretical considerations are supported with experiments conducted for real soft-solder-alloy spectra obtained using LIBS. We consider two decision problems: binary and multiclass classification. The former is used to distinguish overheated soft solders from their normal versions. The latter aims to assign a testing sample to a given group of materials. The measurements are obtained for several laser-energy values, projection masks, and numbers of laser shots. Using cross-validation, we evaluate the above classification methods in terms of their usefulness in solving both classification problems.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2016.16006]

Full Text: PDF

Citation Details


Cite this article

References


K. Zeng, and T. King-Ning, ”Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Mat. Sci. Eng. Rep. 38, 55–105 (2002).

C. W. Mak, N. V. Afzulpurkar, M. N. Dailey, and P. B. Saram, ”A Bayesian approach to automated optical inspection for solder jet ball joint defects in the head gimbal assembly process,” IEEE T. Autom. Sci. Eng. 11, 1155–1162 (2014).

M. Koscielski, and J. Sitek, ”Influence of the fluxes properties on quality and the microstructure of lead-free solder joints executed by selective soldering,” Solder. Surf. Mt. Tech. 26, 2–7 (2014).

Y. Wang, M. Wang, and Z. Zhang, ”Microfocus X-ray printed circuit board inspection system,” Optik 125 4929–4931 (2014).

M. S. Laghari, and Q. A. Memon, ”Identification of faulty BGA solder joints in X-ray images,” Int. J. Fut. Comp. Commun. 4, 122–125 (2015).

J. C. E. Mertens, J. J. Williams, and N. Chawla, ”Development of a lab-scale, high-resolution, tube-generated X-ray computedtomography system for three-dimensional (3D) materials characterization,” Mater. Charact. 92, 36–48 (2014).

M. Rauer, A. Volkert, T. Schreck, S. Härter, and M. Kaloudis, ”Computed-tomography-based analysis of voids in SnBi57Ag1 solder joints and their influence on the reliability,” J. Fail. Anal. Prevent. 14, 272–281 (2014).

S. Bord, A. Clement, J. C. Lecomte, and J. C. Marmeggi, ”Investigation of IC samples using X-ray computer tomography,” J. Phys. IV 118, 413–417 (2004).

L. Su, Z. Zha, X. Lu, T. Shi, and G. Liao, ”Using BP network forultrasonic inspection of flip chip solder joints,” Mech. Syst. Signal Pr. 34, 183–190 (2013).

F. Dugal, and M. Ciappa, ”Study of thermal cycling and temperature aging on PbSnAg die attach solder joints for high power modules,” Microelectroni. Reliab. 54, 1856–1861 (2014).

B. R. Livesay, Electronic Materials Handbook Vol 1: Packaging, (ASM International, Metals Park, 1994).

X. Lu, T. Shi, J. Han, G. Liao, L. Su, and S. Wang, ”Defects inspection of the solder bumps using self reference technology in active thermography,” Infrared Phys. Techn. 63, 97–102 (2014).

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, and H. J. L. Van der Steen, ”Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1996).

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, ”New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).

E. H. Piepmeier, Laser ablation for atomic spectroscopy (John Wiley & Sons, New York, 1986).

G. C. Dacey, ”Optical masers in science and technology,” Science 135, 71–74 (1962).

F. Brech, and L. Cross, ”Optical micro-emission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).

E. F. Runge, R. W. Minck, and F. R. Bryan, ”Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).

L. Radziemski, and D. Cremers, ”A brief history of laser-induced breakdown spectroscopy: from the concept of atoms to LIBS 2012,” Spectrochim. Acta B 87, 3–10 (2013).

C. Aragon, and J. A. Aguilera, ”Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63, 893–916 (2008).

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, ”Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).

D. W. Hahn, and N. Omenetto, ”Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasmaparticle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).

D. W. Hahn, and N. Omenetto, ”Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 100A–119A (2012).

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, ”Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012).

J. El Haddad, L. Canioni, and B. Bousquet, ”Good practices in LIBS analysis: review and advices,” Spectrochim. Acta B. 101, 171–182 (2014).

D. A. Cremers, and L. J. Radziemski (eds.), Handbook of laserinduced breakdown spectroscopy (John Wiley & Sons, Chichester, 2013).

S. Musazzi, and U. Perini (eds.), Laser-induced breakdown spectroscopy: theory and applications (Springer, New York, 2014).

J. P. Singh, and S. N. Thakur, Laser-induced breakdown spectroscopy (Elsevier, Amsterdam, 2007).

D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-induced breakdown spectroscopy, Elemental analysis, Encyclopedia of Analytical Chemistry, 9780470027318.a0708.pub2 (2012).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University Press, Cambridge, 2006).

C. M. Bishop, Pattern recognition and machine learning (Springer, New York, 2007).

D. Barber, Bayesian reasoning and machine learning (Cambridge University Press, New York, 2012).

V. K. Unnikrishnan, K. S. Choudhari, S. D. Kulkarni, R. Nayak, V. B. Kartha, C. Santhosh, and B. M. Suri, ”Biomedical and environmental applications of laser-induced breakdown spectroscopy,” Pramana 82, 397–401 (2014).

M. Á. Aguirre, M. Hidalgo, A. Canals, J. A. Nóbrega, and E. R. Pereira-Filho, ”Analysis of waste electrical and electronic equipment (WEEE) using laser-induced breakdown spectroscopy (LIBS) and multivariate analysis,” Talanta 117, 419–424 (2013).

H. Xia, and M. C. M. Bakker, ”Reliable classification of moving waste materials with LIBS in concrete recycling,” Talanta 120, 239–247 (2014).

J. L. Gottfried, R. S. Harmon, F. C. D. L. Jr., and A. W. Miziolek, ”Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).

G. Kim, J. Kwak, K. R. Kim, H. Lee, K. W. Kim, H. Yang, and K. Park, ”Rapid detection of soils contaminated with heavy metals and oils by laser-induced breakdown spectroscopy (LIBS),” J. Hazard. Mater. 263, 754–760 (2013).

X. Zhu, T. Xu, Q. Lin, L. Liang, G. Niu, H. Lai, M. Xu, et al., ”Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers,” Spectrochimica Acta B 93, 8–13 (2014).

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, et al., ”Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochimica Acta B 82, 1–27 (2013).

Y. Shunchun, L. Jindong, D. Meirong, C. Kai, L. Junyan, and L. Jun, ”Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis,” Appl. Spectrosc. 65, 1197–1201 (2011).

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, ”A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames,” Fuel 106, 318–326 (2013).

J. El Haddad, D. Bruyere, A. Ismaël, G. Gallou, V. Laperche, K. Michel, L. Canioni, et al., ”Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 97, 57–64 (2014).

P. M. Mukhono, K. H. Angeyo, A. Dehayem-Kamadjeu, and K. A. Kaduki, ”Laser-induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics,” Spectrochim. Acta B 87, 81–85 (2013).

G. S. Senesi, ”Laser-induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks,” Earth-Sci. Rev. 139, 231–267 (2014).

M. Sinmaz, B. G. Oztoprak, E. Akman, M. Gunes, E. Kacar, F. Tulek, and A. Demir, ”Classification of archeologic ceramics analysed by Laser-induced Breakdown Spectroscopy (LIBS),” Balk. Phys. Lett. 22, 24–35 (2014).

A. Ramil, A. J. López, and A. Yáñez, ”Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser-induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).

G. Vítková, L. Prokes, K. Novotn ˇ y, P. Po ` ˇ rízka, J. Novotny, ` D. Vsiansk ˇ y, L. ` Celko, et al., ”Comparative study on fast classifica- ˇ tion of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy,” Spectrochim. Acta B 101, 191–199 (2014).

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. TangermannGerk, M. Schmidt, and F. Stelzle, ”Pilot study of laser-induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery—An approach on a feedback Laser control mechanism,” Spectrochim. Acta B 87, 175–181 (2013).

S. Moncayo, S. Manzoor, F. Navarro-Villoslada, and J. O. Caceres, ”Evaluation of supervised chemometric methods for sample classification by laser-induced breakdown spectroscopy,” Chemometr. Intell. Lab. 146, 354–364 (2015).

Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, ”Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements,” Spectrochim. Acta B 66, 138–143 (2011).

J. Cisewski, E. Snyder, J. Hannig, and L. Oudejans, ”Support vector machine classification of suspect powders using laser-induced breakdown spectroscopy (LIBS) spectral data,” J. Chemometr. 26, 143–149 (2012).

L. Liang, T. Zhang, K. Wang, H. Tang, X. Yang, X. Zhu, Y. Duan, et al., ”Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines,” Appl. Opt. 53, 544–552 (2014).

M. Grzegorzek, D. Schwerbel, D. Balthasar, and D. Paulus, ”Automatic sorting of alluminium alloys based on spectroscopy measures,” in ÖAGM/AAPR Workshop 2011 (Graz, Austria, 2011).

T. Canel, P. Demir, E. Kacar, B. G. Oztoprak, E. Akman, M. Gunes, and A. Demir, ”Optimization of parameters for depth resolution of galvanized steel by LIBS technique,” Opt. Laser Technol. 54, 257–264 (2013).

A. M. El Sherbini, and A. A. S. Al Aamer, ”Development of a simple software program used for evaluation of plasma electron density in LIBS experiments via spectral line shape analysis,” J. Signal Inf. Process. 3, 502–515 (2012).

I. T. Jolliffe, Principal component analysis (second edition, Springer, New York, 2002).

J. D. Hybl, G. A. Lithgow, and S. G. Buckley, ”Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003).

G. H. Golub, and C. F. V. Loan, Matrix computations (The Johns Hopkins University Press, Baltimore, London, 1996).

S. Dray, ”On the number of principal components: a test of dimensionality based on measurements of similarity between matrices,” Comput. Stat. Data An. 52, 2228–2237 (2008).

J. Josse, and F. Husson, ”Selecting the number of components in principal component analysis using cross-validation approximations,” Comput. Stat. Data An. 56, 1869–1879 (2012).

M. O. Ulfarsson, and V. Solo, ”Selecting the number of principal components with SURE,” IEEE Signal Proc. Lett. 22, 239–243 (2015).

H. Wold, ”Estimation of principal components and related models by iterative least squares,” in Multivariate Analysis, P. Krishnaiaah, ed., 391–420 (Academic Press, New York, 1966).

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, ”Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, ”Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B 64, 1059–1067 (2009).

J. M. Andrade, G. Cristoforetti, S. Legnaioli, G. Lorenzetti, V. Palleschi, and A. A. Shaltout, ”Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 658–663 (2010).

S. Yao, J. Lu, J. Li, K. Chen, J. Li, and M. Dong, ”Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. Atom. Spectrom. 25, 1733–1738 (2010).

R. A. Putnam, Q. I. Mohaidat, A. Daabous, and S. J. Rehse, ”A comparison of multivariate analysis techniques and variable selection strategies in a laser-induced breakdown spectroscopy bacterial classification,” Spectrochim. Acta B 87, 161–167 (2013).

B. Yunfeng, Z. Ying, Y. Jingwen, W. Zhongchen, and L. Ying, ”Classification and discrimination of minerals using laser induced breakdown spectroscopy and Raman spectroscopy,” Plasma Sci. Technol. 17, 923 (2015).

S. de Jong, ”SIMPLS: an alternative approach to partial least squares regression,” Chemometr. Intell. Lab. 18, 251–263 (1993).

S. Wold, ”Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139 (1976).

S. Wold, and M. Sjostrom, ”SIMCA: a method for analyzing chemical data in terms of similarity and analogy,” in Chemometrics: theory and application, B. R. Kowalski, ed., 243–281 (American Chemical Society, Washington, D. C., 1977).

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, ”Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).

D. F. Specht, ”Probabilistic neural networks,” Neural Networks 3, 109–118 (1990).

V. Motto-Ros, A. Koujelev, G. Osinski, and A. Dudelzak, ”Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc.-Rapid 3, 08011 (2008).

J. O. Caceres, S. Moncayo, J. D. Rosales, F. J. M. de Villena, F. C. Alvira, and G. M. Bilmes, ”Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis,” Appl. Spectrosc. 67, 1064–1072 (2013).

D. Pokrajac, A. Lazarevic, V. Kecman, A. Marcano, Y. Markushin, T. Vance, N. Reljin, et al., ”Automatic classification of laser-induced breakdown spectroscopy (LIBS) data of protein biomarker solutions,” Appl. Spectrosc. 68, 1067–1075 (2014).

T. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. Tang, X. Yang, et al., ”Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods,” J. Anal. Atom. Spectrom. 30, 368–374 (2015).

L. Sheng, T. Zhang, G. Niu, K. Wang, H. Tang, Y. Duan, and H. Li, ”Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF),” J. Anal. Atom. Spectrom. 30, 453–458 (2015).

C. Cortes, and V. Vapnik, ”Support-vector networks,” Machine Learning 20, 273–297 (1995).

A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation (John Wiley & Sons, Chichester, 2009).