Journal of the European Optical Society - Rapid publications, Vol 11 (2016)
Complex method for angular-spectral analysis of volume phase diffraction gratings recorded in photopolymers
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2016.16009]
Citation Details
Cite this article
References
G. Odian, Principles of Polymerization (4th Edition, WileyInterscience, Haboken, 2004).
J. T. Sheridan, M. Downey, and F. T. O’Neill, â€Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,†J. Opt. A-Pure Appl. Optics 3, 477–488 (2001).
M. R. Gleeson, and J. T. Sheridan, â€A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,†J. Opt. A-Pure Appl. Op. 11, 024008 (2009).
H. Li, Y. Qi, and J. T. Sheridan, â€Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,†J. Opt. Soc. Am. B 31, 2648–2656 (2014).
S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, â€Analysis of monomer diffusion in depth in photopolymer materials,†Opt. Commun. 274, 43–49 (2007).
M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, â€Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,†Appl. Optics 52, 8519–8527 (2013).
I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, â€Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,†Appl. Optics 43, 2900–2905 (2004).
F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honell, D. Jurbergs, M. Kogure, et al., â€Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red-The First Class of Instant Holographic Photopolymers,†J. Photopolym. Sci. Tec. 22, 257–260 (2009).
T. Smirnova, L. Kokhtich, O. Sakhno, and J. Stumpe, â€Holographic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties,†Opt. Spectrosc. 110, 129–136 (2011).
H. Berneth, F.-K. Bruder, T. FÃd’cke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, â€Bayfol HX photopolymer for full-color transmission volume Bragg gratings,†Proc. SPIE 9006, 900602 (2014).
M. R. Gleeson, S. Liu, and J. T. Sheridan, â€Improvement of photopolymer materials for holographic data storage,†J. Mater. Sci. 44, 6090–6099 (2009).
N. Suzuki, and Y. Tomita, â€Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticledispersed photopolymers,†Appl. Phys. Lett. 88, 011105 (2006).
S. Gallego, A. Marquez, F. J. Guardiola, M. Riquelme, R. Fernandez, I. Pascual, and A. Belendez, â€Linearity in the response of photopolymers as optical recording media,†Opt. Express 21, 10995–11008 (2013).
F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, â€Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,†Opt. Eng. 40, 533–539 (2001).
M. Ortuno, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, â€Overmodulation Control in the Optimization of a HPDLC Device with Ethyl Eosin as Dye,†Int. J. Polym. Sci. 2013, 8 (2013).
M. Kveton, A. Havránek, P. Fiala, and I. Richter, â€Polymer holography I – Method and experiment,†Ploym. Bull. 58, 253–259 (2007).
S. Gallego, M. Ortuno, C. Neipp, C. Garcia, A. Belendez, and I. Pascual, â€Overmodulation effects in volume holograms recorded on photopolymers,†Opt. Commun. 215, 263–269 (2003).
M. Moothanchery, I. Naydenova, and V. Toal, â€Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,†Opt. Express 19, 13395–13404 (2011).
P. Trochtchanovitch, N. Kostrov, E. Goulanian, A. F. Zerrouk, E. Pen, and V. Shelkovnikov, â€Method of characterization of effective shrinkage in reflection holograms,†Opt. Eng. 43, 1160–1168 (2004).
H. Kogelnik, â€Coupled Wave Theory for Thick Hologram Gratings,†Bell Syst. Tech. J. 48, 2909–2947 (1969).
R. Alferness, â€Analysis of propagation at the second-order Bragg angle of a thick holographic grating,†J. Opt. Soc. Am. 66, 353–362 (1976).
G. Zhao, and P. Mouroulis, â€Second order grating formation in dry holographic photopolymers,†Opt. Commun. 115, 528–532 (1995).
T. Gaylord, and M. Moharam, â€Analysis and applications of optical diffraction by gratings,†Proc. IEEE 73, 894–937 (1985).
M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, â€Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,†J. Opt. Soc. Am. A 12, 1077–1086 (1995).
I. Richter, Z. RyzÃ, and P. Fiala, â€Analysis of binary diffraction gratings: Comparison of different approaches,†J. Mod. Optic. 45, 1335–1355 (1998).
M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, â€Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,†J. Opt. Soc. Am. A 12, 1068–1076 (1995).
P. VojtÃsek, and M. Kveton, â€Monitoring of overmodulation effect in high efficient transmission gratings produced in photopolymers,†Proc. SPIE 9450, 945011–945018 (2015).
P. VojtÃsek and M. Kveton, â€Real-time direct measurement of diffraction efficiency of reflection gratings in photopolymer recording materials,†Proc. SPIE 9442, 944211–944218 (2015).